Deciphering Virus Entry with Fluorescently Labeled Viral Particles

  • Anja B. Hoffmann
  • Magalie Mazelier
  • Psylvia Léger
  • Pierre-Yves Lozach
Part of the Methods in Molecular Biology book series (MIMB, volume 1836)


To infect host cells, viruses have to gain access to the intracellular compartment. The infection process starts with the attachment of viruses to the cell surface. Then a complex series of events, highly dynamic, tightly intricate, and often hard to investigate, follows. This includes virus displacement at the plasma membrane, binding to receptors, signaling, internalization, and release of the viral genome and material into the cytosol. In the past decades, the emergence of sensitive, accurate fluorescence-based technologies has opened new perspectives of investigations in the field. Visualization of single viral particles in fixed and living cells as well as quantification of each virus entry step has been made possible. Here we describe the procedure to fluorescently label viral particles. We also illustrate how to use this powerful tool to decipher the entry of viruses with the most recent fluorescence-based techniques such as high-speed confocal and total internal reflection microscopy, flow cytometry, and fluorimetry.

Key words

Endocytosis Flow cytometry Fluorescent dyes Fluorescently labeled viral particles Fluorimetry Intracellular trafficking Membrane fusion Microscopy Single viral particle tracking Virus entry 



This work was supported by grants from CellNetworks Research Group funds and from DFG LO-2338/1-1.


  1. 1.
    White JM, Whittaker GR (2016) Fusion of enveloped viruses in endosomes. Traffic 17(6):593–614. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Day PM, Schelhaas M (2014) Concepts of papillomavirus entry into host cells. Curr Opin Virol 4:24–31. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Melikyan GB (2014) HIV entry: a game of hide-and-fuse? Curr Opin Virol 4:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lozach PY, Huotari J, Helenius A (2011) Late-penetrating viruses. Curr Opin Virol 1(1):35–43. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leger P, Lozach PY (2015) Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol 10(7):859–881. CrossRefGoogle Scholar
  6. 6.
    Oker-Blom N, Salminen A, Brummer-Korvenkontio M, Kaeaeriaeinen L, Weckstroem P (1964) Isolation of some viruses other than typical tick-borne encephalitis viruses from Ixodes Ricinus ticks in Finland. Ann Med Exp Biol Fenn 42:109–112PubMedPubMedCentralGoogle Scholar
  7. 7.
    Major L, Linn ML, Slade RW, Schroder WA, Hyatt AD, Gardner J, Cowley J, Suhrbier A (2009) Ticks associated with macquarie island penguins carry arboviruses from four genera. PLoS One 4(2):e4375. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xu B, Liu L, Huang X, Ma H, Zhang Y, Du Y, Wang P, Tang X, Wang H, Kang K, Zhang S, Zhao G, Wu W, Yang Y, Chen H, Mu F, Chen W (2011) Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus. PLoS Pathog 7(11):e1002369. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rezelj VV, Overby AK, Elliott RM (2015) Generation of mutant Uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist. J Virol 89(9):4849–4856. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST (2012) A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med 367(9):834–841. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX (2011) Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 364(16):1523–1532. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Albornoz A, Hoffmann AB, Lozach PY, Tischler ND (2016) Early bunyavirus-host cell interactions. Viruses 8(5).
  13. 13.
    Spiegel M, Plegge T, Pohlmann S (2016) The role of phlebovirus glycoproteins in viral entry, assembly and release. Viruses 8(7).
  14. 14.
    Leger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY (2016) Differential use of the C-type lectins L-SIGN and DC-SIGN for phlebovirus endocytosis. Traffic 17(6):639–656. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A (2011) DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10(1):75–88. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A (2010) Entry of bunyaviruses into mammalian cells. Cell Host Microbe 7(6):488–499. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ronka H, Hilden P, Von Bonsdorff CH, Kuismanen E (1995) Homodimeric association of the spike glycoproteins G1 and G2 of Uukuniemi virus. Virology 211(1):241–250. CrossRefPubMedGoogle Scholar
  18. 18.
    Bitto D, Halldorsson S, Caputo A, Huiskonen JT (2016) Low pH and anionic lipid-dependent fusion of Uukuniemi phlebovirus to liposomes. J Biol Chem 291(12):6412–6422. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sun E, He J, Zhuang X (2013) Live cell imaging of viral entry. Curr Opin Virol 3(1):34–43. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Whitt MA, Mire CE (2011) Utilization of fluorescently-labeled tetracysteine-tagged proteins to study virus entry by live cell microscopy. Methods 55(2):127–136. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sakin V, Paci G, Lemke EA, Muller B (2016) Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 590(13):1896–1914. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stolp B, Melican K (2016) Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 590(13):2014–2026. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ewers H, Schelhaas M (2012) Analysis of virus entry and cellular membrane dynamics by single particle tracking. Methods Enzymol 506:63–80. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ruthardt N, Lamb DC, Brauchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19(7):1199–1211. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sivaraman D, Biswas P, Cella LN, Yates MV, Chen W (2011) Detecting RNA viruses in living mammalian cells by fluorescence microscopy. Trends Biotechnol 29(7):307–313. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ward EN, Pal R (2017) Image scanning microscopy: an overview. J Microsc.
  27. 27.
    Combs CA, Shroff H (2017) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 79:2.1.1–2.1.25.
  28. 28.
    Meier R, Franceschini A, Horvath P, Tetard M, Mancini R, von Mering C, Helenius A, Lozach PY (2014) Genome-wide small interfering RNA screens reveal VAMP3 as a novel host factor required for Uukuniemi virus late penetration. J Virol 88(15):8565–8578. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Snijder B, Sacher R, Ramo P, Liberali P, Mench K, Wolfrum N, Burleigh L, Scott CC, Verheije MH, Mercer J, Moese S, Heger T, Theusner K, Jurgeit A, Lamparter D, Balistreri G, Schelhaas M, De Haan CA, Marjomaki V, Hyypia T, Rottier PJ, Sodeik B, Marsh M, Gruenberg J, Amara A, Greber U, Helenius A, Pelkmans L (2012) Single-cell analysis of population context advances RNAi screening at multiple levels. Mol Syst Biol 8:579. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A (2011) Role of endosomes in simian virus 40 entry and infection. J Virol 85(9):4198–4211. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A (2009) Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 83(1):440–453. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A (2014) Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J Virol 88(22):13029–13046. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8(4):e1002657. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pettersson R, Kaariainen L (1973) The ribonucleic acids of Uukuniemi virus, a noncubical tick-borne arbovirus. Virology 56(2):608–619CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Mazelier M, Rouxel RN, Zumstein M, Mancini R, Bell-Sakyi L, Lozach PY (2016) Uukuniemi Virus as a tick-borne virus model. J Virol 90(15):6784–6798. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Boulant S, Stanifer M, Lozach PY (2015) Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses 7(6):2794–2815. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anja B. Hoffmann
    • 1
  • Magalie Mazelier
    • 1
  • Psylvia Léger
    • 1
  • Pierre-Yves Lozach
    • 1
  1. 1.From CellNetworks Cluster of Excellence and Department of Infectious Diseases, VirologyUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations