Skip to main content

Software for Characterizing the Antigenic and Genetic Evolution of Human Influenza Viruses

  • Protocol
  • First Online:
Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Influenza viruses are rapidly evolving pathogens causing annual epidemics and occasional pandemics. The accumulation of amino acid substitutions allows the virus to adapt to changing environments like novel host species or to escape the acquired immunity of the host population. Especially substitutions in the epitope regions of the surface protein HA lead to antigenic change, facilitating the evasion of the host’s immune response by the virus and making frequent updates of the vaccine composition necessary. Through the global monitoring of circulating influenza viruses, large amounts of sequence data are generated. Computational biology offers a quick and easy way to analyze these to characterize the genetic and antigenic evolution of influenza viruses. Using sequence data together with antigenic information provided by hemagglutination inhibition (HI) assays and structural information, bioinformatics methods can elucidate evolutionary relationships between isolates, infer amino acid sites or regions of the protein under positive selection, and identify amino acid changes relevant for the antigenic evolution. We here describe a selection of programs used to generate hypotheses about functionally or antigenically important amino acid changes, protein regions, or individual sites that can subsequently be tested in wet-lab experiments or have value for predicting the future evolution of seasonal influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26(Suppl 4):D49–D53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657. https://doi.org/10.1371/journal.ppat.1003657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI (2014) Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 185:53–63. https://doi.org/10.1016/j.virusres.2014.03.015

    Article  PubMed  CAS  Google Scholar 

  4. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748. https://doi.org/10.1128/JVI.00694-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. WHO (2016) Influenza (Seasonal) fact sheet. http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed 11 April 2017

  6. Medina RA, Garcia-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9(8):590–603. https://doi.org/10.1038/nrmicro2613

    Article  PubMed  CAS  Google Scholar 

  7. Ampofo WK, Al Busaidy S, Cox NJ, Giovanni M, Hay A, Huang S, Inglis S, Katz J, Mokhtari-Azad T, Peiris M, Savy V, Sawanpanyalert P, Venter M, Waddell AL, Wickramasinghe G, Zhang W, Ziegler T, Group WHOW (2013) Strengthening the influenza vaccine virus selection and development process: outcome of the 2nd WHO informal consultation for improving influenza vaccine virus selection held at the Centre international de conferences (CICG) Geneva, Switzerland, 7 to 9 December 2011. Vaccine 31(32):3209–3221. https://doi.org/10.1016/j.vaccine.2013.05.049

    Article  PubMed  Google Scholar 

  8. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376. https://doi.org/10.1126/science.1097211

    Article  PubMed  CAS  Google Scholar 

  9. McHardy AC, Adams B (2009) The role of genomics in tracking the evolution of influenza A virus. PLoS Pathog 5(10):e1000566. https://doi.org/10.1371/journal.ppat.1000566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bush RM, Fitch WM, Bender CA, Cox NJ (1999) Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16(11):1457–1465

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki Y (2006) Natural selection on the influenza virus genome. Mol Biol Evol 23(10):1902–1911. https://doi.org/10.1093/molbev/msl050

    Article  PubMed  CAS  Google Scholar 

  12. Kosakovsky Pond SL, Poon AF, Leigh Brown AJ, Frost SD (2008) A maximum likelihood method for detecting directional evolution in protein sequences and its application to influenza A virus. Mol Biol Evol 25(9):1809–1824. https://doi.org/10.1093/molbev/msn123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Meyer AG, Wilke CO (2015) Geometric constraints dominate the antigenic evolution of influenza H3N2 hemagglutinin. PLoS Pathog 11(5):e1004940. https://doi.org/10.1371/journal.ppat.1004940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bhatt S, Holmes EC, Pybus OG (2011) The genomic rate of molecular adaptation of the human influenza A virus. Mol Biol Evol 28(9):2443–2451. https://doi.org/10.1093/molbev/msr044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Steinbruck L, McHardy AC (2012) Inference of genotype-phenotype relationships in the antigenic evolution of human influenza A (H3N2) viruses. PLoS Comput Biol 8(4):e1002492. https://doi.org/10.1371/journal.pcbi.1002492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xia Z, Jin G, Zhu J, Zhou R (2009) Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus. Bioinformatics 25(18):2309–2317. https://doi.org/10.1093/bioinformatics/btp423

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki Y (2013) Predictability of antigenic evolution for H3N2 human influenza A virus. Genes Genet Syst 88(4):225–232

    Article  CAS  PubMed  Google Scholar 

  18. Cui H, Wei X, Huang Y, Hu B, Fang Y, Wang J (2014) Using multiple linear regression and physicochemical changes of amino acid mutations to predict antigenic variants of influenza A/H3N2 viruses. Biomed Mater Eng 24(6):3729–3735. https://doi.org/10.3233/BME-141201

    Article  PubMed  CAS  Google Scholar 

  19. Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW, Russell CA, Smith DJ, Rambaut A (2014) Integrating influenza antigenic dynamics with molecular evolution. elife 3:e01914. https://doi.org/10.7554/eLife.01914

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ren X, Li Y, Liu X, Shen X, Gao W, Li J (2015) Computational identification of antigenicity-associated sites in the hemagglutinin protein of a/H1N1 seasonal influenza virus. PLoS One 10(5):e0126742. https://doi.org/10.1371/journal.pone.0126742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kratsch C, Klingen TR, Mumken L, Steinbruck L, McHardy AC (2016) Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses. Virus Evol 2(1):vev025. https://doi.org/10.1093/ve/vev025

    Article  PubMed  PubMed Central  Google Scholar 

  22. Neher RA, Bedford T, Daniels RS, Russell CA, Shraiman BI (2016) Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci U S A 113(12):E1701–E1709. https://doi.org/10.1073/pnas.1525578113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999) Predicting the evolution of human influenza A. Science 286(5446):1921–1925

    Article  CAS  PubMed  Google Scholar 

  24. Steinbruck L, McHardy AC (2011) Allele dynamics plots for the study of evolutionary dynamics in viral populations. Nucleic Acids Res 39(1):e4. https://doi.org/10.1093/nar/gkq909

    Article  PubMed  CAS  Google Scholar 

  25. Steinbruck L, Klingen TR, McHardy AC (2014) Computational prediction of vaccine strains for human influenza A (H3N2) viruses. J Virol 88(20):12123–12132. https://doi.org/10.1128/JVI.01861-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Luksza M, Lassig M (2014) A predictive fitness model for influenza. Nature 507(7490):57–61. https://doi.org/10.1038/nature13087

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki Y (2015) Selecting vaccine strains for H3N2 human influenza A virus. Meta Gene 4:64–72. https://doi.org/10.1016/j.mgene.2015.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neher RA, Russell CA, Shraiman BI (2014) Predicting evolution from the shape of genealogical trees. elife 3:e03568. https://doi.org/10.7554/eLife.03568

    Article  PubMed Central  Google Scholar 

  29. Shaman J, Karspeck A (2012) Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A 109(50):20425–20430. https://doi.org/10.1073/pnas.1208772109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Felsenstein J (2003) Inferring phylogenies. Sinauer

    Google Scholar 

  31. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82(2):596–601. https://doi.org/10.1128/JVI.02005-07

    Article  PubMed  CAS  Google Scholar 

  32. Shu Y, McCauley J (2017) GISAID: Global initiative on sharing all influenza data – from vision to reality. Euro Surveill 22(13):30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325(5937):197–201. https://doi.org/10.1126/science.1176225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, Salzberg SL, Fraser CM, Lipman DJ, Taubenberger JK (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3(9):e300. https://doi.org/10.1371/journal.pbio.0030300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, St George K, Taylor J, Spiro DJ, Sengamalay NA, Ghedin E, Taubenberger JK, Holmes EC (2008) Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 4(2):e1000012. https://doi.org/10.1371/journal.ppat.1000012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Westgeest KB, Russell CA, Lin X, Spronken MI, Bestebroer TM, Bahl J, van Beek R, Skepner E, Halpin RA, de Jong JC, Rimmelzwaan GF, Osterhaus AD, Smith DJ, Wentworth DE, Fouchier RA, de Graaf M (2014) Genomewide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011. J Virol 88(5):2844–2857. https://doi.org/10.1128/JVI.02163-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. https://doi.org/10.1093/bioinformatics/btp348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rambaut A FigTree. http://tree.bio.ed.ac.uk/software/figtree/

  42. Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61(6):1061–1067. https://doi.org/10.1093/sysbio/sys062

    Article  PubMed  Google Scholar 

  43. University of Michigan, Zhang Lab FASTA format. http://zhanglab.ccmb.med.umich.edu/FASTA/. Accessed 19 June 2017

  44. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503

    Article  CAS  PubMed  Google Scholar 

  45. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4(12):e1000304. https://doi.org/10.1371/journal.pgen.1000304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Manz B, Schwemmle M, Brunotte L (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 87(13):7200–7209. https://doi.org/10.1128/JVI.00980-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tusche C, Steinbruck L, McHardy AC (2012) Detecting patches of protein sites of influenza A viruses under positive selection. Mol Biol Evol 29(8):2063–2071. https://doi.org/10.1093/molbev/mss095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Klingen TR, Reimering S, Loers J, Mooren K, Klawonn F, Krey T, Gabriel G, McHardy A (2018) Sweep Dynamics (SD) plots: Computational identification of selective sweeps to monitor the adaptation of influenza A viruses. Sci Rep 8:373. https://doi.org/10.1038/s41598-017-18791-z

  49. Carter DM, Darby CA, Lefoley BC, Crevar CJ, Alefantis T, Oomen R, Anderson SF, Strugnell T, Cortes-Garcia G, Vogel TU, Parrington M, Kleanthous H, Ross TM (2016) Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J Virol 90(9):4720–4734. https://doi.org/10.1128/JVI.03152-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Crevar CJ, Carter DM, Lee KY, Ross TM (2015) Cocktail of H5N1 COBRA HA vaccines elicit protective antibodies against H5N1 viruses from multiple clades. Hum Vaccin Immunother 11(3):572–583. https://doi.org/10.1080/21645515.2015.1012013

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beerenwinkel N, Gunthard HF, Roth V, Metzner KJ (2012) Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 3:329. https://doi.org/10.3389/fmicb.2012.00329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Prosperi MC, Salemi M (2012) QuRe: software for viral quasispecies reconstruction from next-generation sequencing data. Bioinformatics 28(1):132–133. https://doi.org/10.1093/bioinformatics/btr627

    Article  PubMed  CAS  Google Scholar 

  53. Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N (2011) ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics 12:119. https://doi.org/10.1186/1471-2105-12-119

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baaijens JA, Aabidine AZE, Rivals E, Schonhuth A (2017) De novo assembly of viral quasispecies using overlap graphs. Genome Res 27(5):835–848. https://doi.org/10.1101/gr.215038.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wong WS, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168(2):1041–1051. https://doi.org/10.1534/genetics.104.031153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222. https://doi.org/10.1093/molbev/msi105

    Article  PubMed  CAS  Google Scholar 

  57. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  58. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  PubMed  CAS  Google Scholar 

  60. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  PubMed  CAS  Google Scholar 

  62. Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13(5):303–314. https://doi.org/10.1038/nrg3186

    Article  PubMed  CAS  Google Scholar 

  63. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki Y, Gojobori T, Nei M (2001) ADAPTSITE: detecting natural selection at single amino acid sites. Bioinformatics 17(7):660–661

    Article  CAS  PubMed  Google Scholar 

  65. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679. https://doi.org/10.1093/bioinformatics/bti079

    Article  PubMed  CAS  Google Scholar 

  66. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457. https://doi.org/10.1093/bioinformatics/btq429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Neher RA, Bedford T (2015) Nextflu: real-time tracking of seasonal influenza virus evolution in humans. Bioinformatics 31(21):3546–3548. https://doi.org/10.1093/bioinformatics/btv381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182(2):475–485

    Article  CAS  PubMed  Google Scholar 

  69. Burke DF, Smith DJ (2014) A recommended numbering scheme for influenza A HA subtypes. PLoS One 9(11):e112302. https://doi.org/10.1371/journal.pone.0112302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice C. McHardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reimering, S., McHardy, A.C. (2018). Software for Characterizing the Antigenic and Genetic Evolution of Human Influenza Viruses. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics