Live Imaging of Influenza Viral Ribonucleoproteins Using Light-Sheet Microscopy

  • Amar R. Bhagwat
  • Valerie Le Sage
  • Seema S. LakdawalaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1836)


Influenza viruses exhibit a complex life cycle that is still poorly understood. It involves independent replication of each of the eight segments that make up its genome and subsequent coordinated assembly as they egress from the host cell. Fast, time-resolved volumetric live cell imaging offers a powerful tool for understanding the various host mechanisms hijacked by the virus. Here, we describe the methods necessary for generating influenza viruses that carry a fluorescently tagged polymerase complex, infection of biologically relevant cells with these viruses, and finally protocols for live cell imaging and analysis.

Key words

Influenza genome Fluorescent influenza virus Fluorescence imaging Live cell imaging Particle tracking Fluorescence microscopy Light-sheet microscopy Fluorescent polymerase 


  1. 1.
    Eisfeld AJ, Neumann G, Kawaoka Y (2015) At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol 13(1):28–41. CrossRefPubMedGoogle Scholar
  2. 2.
    Yamauchi Y, Helenius A (2013) Virus entry at a glance. J Cell Sci 126(Pt 6):1289–1295. CrossRefPubMedGoogle Scholar
  3. 3.
    Brauer R, Chen P (2015) Influenza virus propagation in embryonated chicken eggs. J Vis Exp (97).
  4. 4.
    Dos Santos Afonso E, Escriou N, Leclercq I, van der Werf S, Naffakh N (2005) The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5′ end of the PB2 segment. Virology 341(1):34–46. CrossRefPubMedGoogle Scholar
  5. 5.
    Avilov SV, Moisy D, Munier S, Schraidt O, Naffakh N, Cusack S (2012) Replication-competent influenza A virus that encodes a split-green fluorescent protein-tagged PB2 polymerase subunit allows live-cell imaging of the virus life cycle. J Virol 86(3):1433–1448. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lakdawala SS, Wu Y, Wawrzusin P, Kabat J, Broadbent AJ, Lamirande EW, Fodor E, Altan-Bonnet N, Shroff H, Subbarao K (2014) Influenza A virus assembly intermediates fuse in the cytoplasm. PLoS Pathog 10(3):e1003971. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murray ZBJI (2011) Live imaging of Caenorhabditis elegans embryogenesis. In: Sharpe J, Wong RO (eds) Imaging in developmental biology: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  8. 8.
    Cole RW, Jinadasa T, Brown CM (2011) Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat Protoc 6(12):1929–1941. CrossRefPubMedGoogle Scholar
  9. 9.
    Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, York AG, Winter PW, Waterman CM, Bao Z, Colon-Ramos DA, McAuliffe M, Shroff H (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31(11):1032–1038. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97(11):6108–6113. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fodor E, Smith M (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78(17):9144–9153. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kumar A, Wu Y, Christensen R, Chandris P, Gandler W, McCreedy E, Bokinsky A, Colon-Ramos DA, Bao Z, McAuliffe M, Rondeau G, Shroff H (2014) Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protoc 9(11):2555–2573. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    ASI diSPIM Assembly (2015) YouTube.
  14. 14.
    diSPIM Alignment Video (2015) YouTube.
  15. 15.
    Zerial M. MotionTracking.
  16. 16.
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
  18. 18.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445CrossRefPubMedGoogle Scholar
  19. 19.
    York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E (2013) Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci U S A 110(45):E4238–E4245. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Santangelo PJ, Lifland AW, Curt P, Sasaki Y, Bassell GJ, Lindquist ME, Crowe JE Jr (2009) Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 6(5):347–349. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    WHO Global Influenza Surveillance Network (2011) Manual for the laboratory diagnosis and virological surveillance of influenza. WHO Press, GenevaGoogle Scholar
  23. 23.
    Eisfeld AJ, Neumann G, Kawaoka Y (2014) Influenza A virus isolation, culture and identification. Nat Protoc 9(11):2663–2681. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, Ishikawa H, Leonetti MD, Marshall WF, Weissman JS, Huang B (2016) Versatile protein tagging in cells with split fluorescent protein. Nat Commun 7:11046. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Long F, Zeng S, Huang ZL (2012) Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras. Opt Express 20(16):17741–17759. CrossRefPubMedGoogle Scholar
  26. 26.
    Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schmied C, Steinbach P, Pietzsch T, Preibisch S, Tomancak P (2016) An automated workflow for parallel processing of large multiview SPIM recordings. Bioinformatics 32(7):1112–1114. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amar R. Bhagwat
    • 1
  • Valerie Le Sage
    • 1
  • Seema S. Lakdawala
    • 1
    Email author
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations