Advertisement

Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa

  • Malte Lehmann
  • Elisabeth KnustEmail author
  • Sarita HebbarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1834)

Abstract

Retinitis pigmentosa (RP) is a complex inherited disease. It is associated with mutations in a wide variety of genes with many different functions. These mutations impact the integrity of rod photoreceptors and ultimately result in the progressive degeneration of rods and cone photoreceptors in the retina, leading to complete blindness. A hallmark of this disease is the variable degree to which symptoms are manifest in patients. This is indicative of the influence of the environment, and/or of the distinct genetic makeup of the individual.

The fruit fly, Drosophila melanogaster, has effectively proven to be a great model system to better understand interconnected genetic networks. Unraveling genetic interactions and thereby different cellular processes is relatively easy because more than a century of research on flies has enabled the creation of sophisticated genetic tools to perturb gene function. A remarkable conservation of disease genes across evolution and the similarity of the general organization of the fly and vertebrate photoreceptor cell had prompted research on fly retinal degeneration. To date six fly models for RP, including RP4, RP11, RP12, RP14, RP25, and RP26, have been established, and have provided useful information on RP disease biology. In this chapter, an outline of approaches and experimental specifications are described to enable utilizing or developing new fly models of RP.

Key words

Retinal disease Drosophila melanogaster Genetics Cellular pathways 

Notes

Acknowledgments

We would like to thank the members of the Knust Lab for fruitful and constant discussions and Julia Eichhorn for help with Fig. 1. Work in the authors’ lab was supported by the Max Planck Society.

References

  1. 1.
    Kiselev A, Subramaniam S (1994) Activation and regeneration of rhodopsin in the insect visual cycle. Science 266(5189):1369–1373CrossRefGoogle Scholar
  2. 2.
    Wang X, Wang T, Jiao Y, von Lintig J, Montell C (2010) Requirement for an enzymatic visual cycle in Drosophila. Curr Biol 20(2):93–102. https://doi.org/10.1016/j.cub.2009.12.022 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang X, Wang T, Ni JD, von Lintig J, Montell C (2012) The Drosophila visual cycle and de novo chromophore synthesis depends on rdhB. J Neurosci 32(10):3485–3491. https://doi.org/10.1523/JNEUROSCI.5350-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Montell C (2012) Drosophila visual transduction. Trends Neurosci 35(6):356–363. https://doi.org/10.1016/j.tins.2012.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflügers Arch 454:821–847CrossRefGoogle Scholar
  6. 6.
    Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53(2):217–240CrossRefGoogle Scholar
  7. 7.
    Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362CrossRefGoogle Scholar
  8. 8.
    Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4(12). https://doi.org/10.1101/cshperspect.a008391 CrossRefGoogle Scholar
  9. 9.
    Amini R, Rocha-Martins M, Norden C (2018) Neuronal migration and lamination in the vertebrate retina. Front Neurosci 11(742). https://doi.org/10.3389/fnins.2017.00742. PMID: 29375289
  10. 10.
    Kumar JP (2017) The fly eye: through the looking glass. Dev Dyn. https://doi.org/10.1002/dvdy.24585 CrossRefGoogle Scholar
  11. 11.
    Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2(4):545–557. https://doi.org/10.1002/wdev.100 CrossRefPubMedGoogle Scholar
  12. 12.
    Davis TL, Rebay I (2017) Master regulators in development: views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 421(2):93–107. https://doi.org/10.1016/j.ydbio.2016.12.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Viets K, Eldred K, Johnston RJ Jr (2016) Mechanisms of photoreceptor patterning in vertebrates and invertebrates. Trends Genet 32(10):638–659. https://doi.org/10.1016/j.tig.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66(1):15–36. https://doi.org/10.1016/j.neuron.2010.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Baker NE, Li K, Quiquand M, Ruggiero R, Wang LH (2014) Eye development. Methods 68(1):252–259. https://doi.org/10.1016/j.ymeth.2014.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pak WL, Grossfield J, Whiten V (1969) Non-phototactic mutants in a study of vision of Drosophila. Nature 222:351–354CrossRefGoogle Scholar
  17. 17.
    Larrivee DC, Conrad SK, Stephenson RS, Pak WL (1981) Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J Gen Physiol 78(5):521–545CrossRefGoogle Scholar
  18. 18.
    Stark WS, Sapp R (1987) Ultrastructure of the retina of Drosophila melanogaster: the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). J Neurogenet 4(5):227–240PubMedGoogle Scholar
  19. 19.
    Harris WA, Stark WS (1977) Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J Gen Physiol 69(3):261–291CrossRefGoogle Scholar
  20. 20.
    Dasgupta U, Bamba T, Chiantia S, Karim P, Tayoun AN, Yonamine I, Rawat SS, Rao RP, Nagashima K, Fukusaki E, Puri V, Dolph PJ, Schwille P, Acharya JK, Acharya U (2009) Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci U S A 106(47):20063–20068. https://doi.org/10.1073/pnas.0911028106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18(1):95–105CrossRefGoogle Scholar
  22. 22.
    Li C, Geng C, Leung HT, Hong YS, Strong LL, Schneuwly S, Pak WL (1999) INAF, a protein required for transient receptor potential Ca(2+) channel function. Proc Natl Acad Sci U S A 96(23):13474–13479CrossRefGoogle Scholar
  23. 23.
    Pocha SM, Shevchenko A, Knust E (2011) Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 195(5):827–838CrossRefGoogle Scholar
  24. 24.
    Johnson K, Grawe F, Grzeschik N, Knust E (2002) Drosophila Crumbs Is Required to Inhibit Light-Induced Photoreceptor Degeneration. Curr Biol 12:1675–1680CrossRefGoogle Scholar
  25. 25.
    Wang DY, Chan WM, Tam PO, Baum L, Lam DS, Chong KK, Fan BJ, Pang CP (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta 351:5–16CrossRefGoogle Scholar
  26. 26.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21(5):857–864. https://doi.org/10.1093/emboj/21.5.857 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141. https://doi.org/10.1111/cge.12203 CrossRefPubMedGoogle Scholar
  29. 29.
    Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P (2017) Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 26(R1):R2–R11. https://doi.org/10.1093/hmg/ddx185 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–366. https://doi.org/10.1038/343364a0 CrossRefPubMedGoogle Scholar
  31. 31.
    Colley NJ, Cassill JA, Baker EK, Zuker CS (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci U S A 92(7):3070–3074CrossRefGoogle Scholar
  32. 32.
    Beira JV, Paro R (2016) The legacy of Drosophila imaginal discs. Chromosoma 125(4):573–592. https://doi.org/10.1007/s00412-016-0595-4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3(2):353–358. https://doi.org/10.1534/g3.112.004820 CrossRefGoogle Scholar
  34. 34.
    Greenspan RJ (2004) Fly pushing: the theory and practice of Drosophila genetics, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  35. 35.
    Roberts DB (1998) Drosophila: a practical approach (Practical approach series), vol 191. IRL Press at Oxford University Press, Oxford, UKGoogle Scholar
  36. 36.
    Dahmann C (2010) Drosophila—methods and protocols (Methods in molecular biology). Humana Press Inc., Totowa, NJGoogle Scholar
  37. 37.
    Millburn GH, Crosby MA, Gramates LS, Tweedie S, FlyBase C (2016) FlyBase portals to human disease research using Drosophila models. Dis Model Mech 9(3):245–252. https://doi.org/10.1242/dmm.023317 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gramates LS, Marygold SJ, Santos GD, Urbano JM, Antonazzo G, Matthews BB, Rey AJ, Tabone CJ, Crosby MA, Emmert DB, Falls K, Goodman JL, Hu Y, Ponting L, Schroeder AJ, Strelets VB, Thurmond J, Zhou P, the FlyBase C (2017) FlyBase at 25: looking to the future. Nucleic Acids Res 45(D1):D663–D671. https://doi.org/10.1093/nar/gkw1016 CrossRefPubMedGoogle Scholar
  39. 39.
    St. Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 31:176–188CrossRefGoogle Scholar
  40. 40.
    Venken KJ, Bellen HJ (2012) Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase. Methods Mol Biol 859:203–228. https://doi.org/10.1007/978-1-61779-603-6_12 CrossRefPubMedGoogle Scholar
  41. 41.
    McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457. https://doi.org/10.1038/74542 CrossRefPubMedGoogle Scholar
  42. 42.
    Winkler S, Gscheidel N, Brand M (2011) Mutant generation in vertebrate model organisms by TILLING. Methods Mol Biol 770:475–504. https://doi.org/10.1007/978-1-61779-210-6_19 CrossRefPubMedGoogle Scholar
  43. 43.
    Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7(6):454–459. https://doi.org/10.1093/bfgp/eln046 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, Kuhrs A, Cobreros L, Brand M, Gonzalez-Gaitan M (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15(5):718–723. https://doi.org/10.1101/gr.3721805 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Spannl S, Kumichel A, Hebbar S, Kapp K, Gonzalez-Gaitan M, Winkler S, Blawid R, Jessberger G, Knust E (2017) The Crumbs_C isoform of Drosophila shows tissue- and stage-specific expression and prevents light-dependent retinal degeneration. Biol Open 6(2):165–175. https://doi.org/10.1242/bio.020040 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228. https://doi.org/10.1016/j.celrep.2013.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. https://doi.org/10.1534/genetics.113.152710 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111(29):E2967–E2976. https://doi.org/10.1073/pnas.1405500111 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu J, Ren X, Sun J, Wang X, Qiao HH, Xu BW, Liu LP, Ni JQ (2015) A toolkit of CRISPR-based genome editing systems in Drosophila. J Genet Genomics 42(4):141–149. https://doi.org/10.1016/j.jgg.2015.02.007 CrossRefPubMedGoogle Scholar
  50. 50.
    Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195(3):715–721. https://doi.org/10.1534/genetics.113.156737 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ (2017) Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci 60(5):476–489. https://doi.org/10.1007/s11427-017-9029-9 CrossRefPubMedGoogle Scholar
  53. 53.
    Garen SH, Kankel DR (1983) Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. Dev Biol 96:445–466CrossRefGoogle Scholar
  54. 54.
    Becker HJ (1957) Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z indukt Abstamm u Vererbungslehre 88:333–373Google Scholar
  55. 55.
    Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730PubMedPubMedCentralGoogle Scholar
  56. 56.
    Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59(3):499–509CrossRefGoogle Scholar
  57. 57.
    Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639PubMedPubMedCentralGoogle Scholar
  58. 58.
    Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860PubMedGoogle Scholar
  59. 59.
    Lee T (2014) Generating mosaics for lineage analysis in flies. Wiley Interdiscip Rev Dev Biol 3(1):69–81. https://doi.org/10.1002/wdev.122 CrossRefPubMedGoogle Scholar
  60. 60.
    Griffin R, Binari R, Perrimon N (2014) Genetic odyssey to generate marked clones in Drosophila mosaics. Proc Natl Acad Sci U S A 111(13):4756–4763. https://doi.org/10.1073/pnas.1403218111 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Call GB, Olson JM, Chen J, Villarasa N, Ngo KT, Yabroff AM, Cokus S, Pellegrini M, Bibikova E, Bui C, Cespedes A, Chan C, Chan S, Cheema AK, Chhabra A, Chitsazzadeh V, Do MT, Fang QA, Folick A, Goodstein GL, Huang CR, Hung T, Kim E, Kim W, Kim Y, Kohan E, Kuoy E, Kwak R, Lee E, Lee J, Lin H, Liu HC, Moroz T, Prasad T, Prashad SL, Patananan AN, Rangel A, Rosselli D, Sidhu S, Sitz D, Taber CE, Tan J, Topp K, Tran P, Tran QM, Unkovic M, Wells M, Wickland J, Yackle K, Yavari A, Zaretsky JM, Allen CM, Alli L, An J, Anwar A, Arevalo S, Ayoub D, Badal SS, Baghdanian A, Baghdanian AH, Baumann SA, Becerra VN, Chan HJ, Chang AE, Cheng XA, Chin M, Chong F, Crisostomo C, Datta S, Delosreyes A, Diep F, Ekanayake P, Engeln M, Evers E, Farshidi F, Fischer K, Formanes AJ, Gong J, Gupta R, Haas BE, Hahm V, Hsieh M, Hui JZ, Iao ML, Jin SD, Kim AY, Kim LS, King M, Knudsen-Robbins C, Kohanchi D, Kovshilovskaya B, Ku A, Kung RW, Landig ME, Latterman SS, Lauw SS, Lee DS, Lee JS, Lei KC, Leung LL, Lerner R, Lin JY, Lin K, Lim BC, Lui CP, Liu TQ, Luong V, Makshanoff J, Mei AC, Meza M, Mikhaeil YA, Moarefi M, Nguyen LH, Pai SS, Pandya M, Patel AR, Picard PD, Safaee MM, Salame C, Sanchez C, Sanchez N, Seifert CC, Shah A, Shilgevorkyan OH, Singh I, Soma V, Song JJ, Srivastava N, StaAna JL, Sun C, Tan D, Teruya AS, Tikia R, Tran T, Travis EG, Trinh JD, Vo D, Walsh T, Wong RS, Wu K, Wu YW, Yang NX, Yeranosian M, Yu JS, Zhou JJ, Zhu RX, Abrams A, Abramson A, Amado L, Anderson J, Bashour K, Beyer E, Bookatz A, Brewer S, Buu N, Calvillo S, Cao J, Chan A, Chan J, Chang A, Chang D, Chang Y, Chen Y, Choi J, Chou J, Dang P, Datta S, Davarifar A, Deravanesian A, Desai P, Fabrikant J, Farnad S, Fu K, Garcia E, Garrone N, Gasparyan S, Gayda P, Go S, Goffstein C, Gonzalez C, Guirguis M, Hassid R, Hermogeno B, Hong J, Hong A, Hovestreydt L, Hu C, Huff D, Jamshidian F, Jen J, Kahen K, Kao L, Kelley M, Kho T, Kim Y, Kim S, Kirkpatrick B, Langenbacher A, Laxamana S, Lee J, Lee C, Lee SY, Lee TS, Lee T, Lewis G, Lezcano S, Lin P, Luu T, Luu J, Marrs W, Marsh E, Marshall J, Min S, Minasian T, Minye H, Misra A, Morimoto M, Moshfegh Y, Murray J, Nguyen K, Nguyen C, Nodado E 2nd, O’Donahue A, Onugha N, Orjiakor N, Padhiar B, Paul E, Pavel-Dinu M, Pavlenko A, Paz E, Phaklides S, Pham L, Poulose P, Powell R, Pusic A, Ramola D, Regalia K, Ribbens M, Rifai B, Saakyan M, Saarikoski P, Segura M, Shadpour F, Shemmassian A, Singh R, Singh V, Skinner E, Solomin D, Soneji K, Spivey K, Stageberg E, Stavchanskiy M, Tekchandani L, Thai L, Thiyanaratnam J, Tong M, Toor A, Tovar S, Trangsrud K, Tsang WY, Uemura M, Vollmer E, Weiss E, Wood D, Wu J, Wu S, Wu W, Xu Q, Yamauchi Y, Yarosh W, Yee L, Yen G, Banerjee U (2007) Genomewide clonal analysis of lethal mutations in the Drosophila melanogaster eye: comparison of the X chromosome and autosomes. Genetics 177(2):689–697. https://doi.org/10.1534/genetics.107.077735 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Huang Y, Xie J, Wang T (2015) A fluorescence-based genetic screen to study retinal degeneration in Drosophila. PLoS One 10(12):e0144925. https://doi.org/10.1371/journal.pone.0144925 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers L, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159(1):200–214. https://doi.org/10.1016/j.cell.2014.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Thaker HM, Kankel DR (1992) Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics 131:883–894PubMedPubMedCentralGoogle Scholar
  65. 65.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415PubMedGoogle Scholar
  66. 66.
    den Hollander AI, Johnson K, de Kok YJM, Klebes A, Brunner HG, Knust E, Cremers FPM (2001) CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. Hum Mol Genet 10:2767–2773CrossRefGoogle Scholar
  67. 67.
    Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci U S A 106(40):17043–17048. https://doi.org/10.1073/pnas.0905566106 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M (2010) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6(8):e1001075. https://doi.org/10.1371/journal.pgen.1001075 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Elliott DA, Brand AH (2008) The GAL4 system : a versatile system for the expression of genes. Methods Mol Biol 420:79–95CrossRefGoogle Scholar
  70. 70.
    McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768CrossRefGoogle Scholar
  71. 71.
    McGuire SE, Deshazer M, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391CrossRefGoogle Scholar
  72. 72.
    Kaya-Copur A, Schnorrer F (2016) A guide to genome-wide in vivo RNAi applications in Drosophila. Methods Mol Biol 1478:117–143. https://doi.org/10.1007/978-1-4939-6371-3_6 CrossRefPubMedGoogle Scholar
  73. 73.
    Zhou J, Tong C (2016) Design and methods of large-scale RNA interference screens in Drosophila. Methods Mol Biol 1470:163–169. https://doi.org/10.1007/978-1-4939-6337-9_13 CrossRefPubMedGoogle Scholar
  74. 74.
    Jonchere V, Bennett D (2013) Validating RNAi phenotypes in Drosophila using a synthetic RNAi-resistant transgene. PLoS One 8(8):e70489. https://doi.org/10.1371/journal.pone.0070489 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Caussinus E, Affolter M (2016) deGradFP: a system to knockdown GFP-tagged proteins. Methods Mol Biol 1478:177–187. https://doi.org/10.1007/978-1-4939-6371-3_9 CrossRefPubMedGoogle Scholar
  76. 76.
    Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci 98(26):15050–15055. https://doi.org/10.1073/pnas.261408198 CrossRefPubMedGoogle Scholar
  77. 77.
    Kelso RJ, Buszczak M, Quinones AT, Castiblanco C, Mazzalupo S, Cooley L (2004) Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res 32(Database issue):D418–D420. https://doi.org/10.1093/nar/gkh014 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, KJ VV, Krishnan RT, Krishnamoorthy A, Ferreira IR, Ejsmont RK, Finkl K, Hasse S, Kampfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. Elife 5:e12068. https://doi.org/10.7554/eLife.12068 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2015) A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife 4. https://doi.org/10.7554/eLife.05338
  80. 80.
    Kaufman TC (2017) A short history and description of Drosophila melanogaster classical genetics: chromosome aberrations, forward genetic screens, and the nature of mutations. Genetics 206(2):665–689. https://doi.org/10.1534/genetics.117.199950 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Economos AC, Lints FA (1984) Growth rate and life span in Drosophila. III. Effect of body size and developmental temperature on the biphasic relationship between growth rate and life span. Mech Ageing Dev 27(2):153–160CrossRefGoogle Scholar
  82. 82.
    Fast I, Hewel C, Wester L, Schumacher J, Gebert D, Zischler H, Berger C, Rosenkranz D (2017) Temperature-responsive miRNAs in Drosophila orchestrate adaptation to different ambient temperatures. RNA 23(9):1352–1364. https://doi.org/10.1261/rna.061119.117 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Carvalho M, Schwudke D, Sampaio JL, Palm W, Riezman I, Dey G, Gupta GD, Mayor S, Riezman H, Shevchenko A, Kurzchalia TV, Eaton S (2010) Survival strategies of a sterol auxotroph. Development 137(21):3675–3685. https://doi.org/10.1242/dev.044560 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stark WS, Zitzmann WG (1976) Isolation of adaptation mechanisms and photopigment spectra by Vitamin A deprivation in Drosophila. J Comp Physiol 105:15–27CrossRefGoogle Scholar
  85. 85.
    Voolstra O, Oberhauser V, Sumser E, Meyer NE, Maguire ME, Huber A, von Lintig J (2010) NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J Biol Chem 285(3):2130–2139. https://doi.org/10.1074/jbc.M109.056101 CrossRefPubMedGoogle Scholar
  86. 86.
    Lee RD, Thomas CF, Marietta RG, Stark WS (1996) Vitamin a, visual pigments, and visual receptors in Drosophila. Microsc Res Tech 35(6):418–430. https://doi.org/10.1002/(SICI)1097-0029(19961215)35:6<418::AID-JEMT2>3.0.CO;2-ECrossRefPubMedGoogle Scholar
  87. 87.
    von Lintig J (2012) Metabolism of carotenoids and retinoids related to vision. J Biol Chem 287(3):1627–1634. https://doi.org/10.1074/jbc.R111.303990 CrossRefGoogle Scholar
  88. 88.
    Sapp RJ, Christianson JS, Maier L, Studer K, Stark WS (1991) Carotenoid replacement therapy in Drosophila: recovery of membrane, opsin and visual pigment. Exp Eye Res 53(1):73–79CrossRefGoogle Scholar
  89. 89.
    Chen SF, Tsai YC, Fan SS (2012) Drosophila king tubby (ktub) mediates light-induced rhodopsin endocytosis and retinal degeneration. J Biomed Sci 19:101. https://doi.org/10.1186/1423-0127-19-101 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gurudev N, Yuan M, Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3(5):332–341. https://doi.org/10.1242/bio.20147310 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Matsumoto E, Hirosawa K, Takagawa K, Hotta Y (1988) Structure of retinular cells in a Drosophila melanogaster visual mutant, rdgA, at early stages of degeneration. Cell Tissue Res 252(2):293–300CrossRefGoogle Scholar
  92. 92.
    Berson EL, Rosner B, Sandberg MA, Dryja TP (1991) Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (Pro-23-his). Arch Ophthalmol 109(1):92–101CrossRefGoogle Scholar
  93. 93.
    Passerini I, Sodi A, Giambene B, Menchini U, Torricelli F (2007) Phenotypic intrafamilial variability associated with S212G mutation in the RDS/peripherin gene. Eur J Ophthalmol 17(6):1000–1003CrossRefGoogle Scholar
  94. 94.
    Riaz M, Baird PN (2016) Genetics in retinal diseases. Dev Ophthalmol 55:57–62. https://doi.org/10.1159/000431142 CrossRefPubMedGoogle Scholar
  95. 95.
    Rose AM, Bhattacharya SS (2016) Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin Genet 90(2):118–126. https://doi.org/10.1111/cge.12758 CrossRefPubMedGoogle Scholar
  96. 96.
    Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RR, Barron M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M, Muzny DM, Nazareth L, Newsham I, Perales L, Pu LL, Qu C, Ramia M, Reid JG, Rollmann SM, Rozas J, Saada N, Turlapati L, Worley KC, Wu YQ, Yamamoto A, Zhu Y, Bergman CM, Thornton KR, Mittelman D, Gibbs RA (2012) The Drosophila melanogaster genetic reference panel. Nature 482(7384):173–178. https://doi.org/10.1038/nature10811 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Linford NJ, Bilgir C, Ro J, Pletcher SD (2013) Measurement of lifespan in Drosophila melanogaster. J Vis Exp 71. https://doi.org/10.3791/50068
  98. 98.
    Xu Y, Wang T (2016) CULD is required for rhodopsin and TRPL channel endocytic trafficking and survival of photoreceptor cells. J Cell Sci 129(2):394–405. https://doi.org/10.1242/jcs.178764 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Luan Z, Reddig K, Li HS (2014) Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration. Exp Neurol 261:791–801. https://doi.org/10.1016/j.expneurol.2014.08.025 CrossRefPubMedGoogle Scholar
  100. 100.
    Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67(4):701–716CrossRefGoogle Scholar
  101. 101.
    Dickson BJ, van der Straten A, Dominguez M, Hafen E (1996) Mutations modulating Raf signaling in Drosophila eye development. Genetics 142 (1):163-171Google Scholar
  102. 102.
    Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64(1):39–48CrossRefGoogle Scholar
  103. 103.
    Xiong B, Bellen HJ (2013) Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 36(11):652–660. https://doi.org/10.1016/j.tins.2013.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Hollingsworth TJ, Gross AK (2012) Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol 293:1–44. https://doi.org/10.1016/B978-0-12-394304-0.00006-3 CrossRefPubMedGoogle Scholar
  105. 105.
    Chow CY, Kelsey KJ, Wolfner MF, Clark AG (2016) Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum Mol Genet 25(4):651–659. https://doi.org/10.1093/hmg/ddv502 CrossRefPubMedGoogle Scholar
  106. 106.
    Flaherty MS, Zavadil J, Ekas LA, Bach EA (2009) Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway. Dev Dyn 238(9):2235–2253. https://doi.org/10.1002/dvdy.21989 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Potier D, Davie K, Hulselmans G, Naval Sanchez M, Haagen L, Huynh-Thu VA, Koldere D, Celik A, Geurts P, Christiaens V, Aerts S (2014) Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference. Cell Rep 9(6):2290–2303. https://doi.org/10.1016/j.celrep.2014.11.038 CrossRefPubMedGoogle Scholar
  108. 108.
    Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600. https://doi.org/10.1038/msb.2012.29 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB, Hafen E, van der Goot FG, Robinett CC, Gatti M, Gonzalez-Gaitan M, Wenk MR (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24(1):98–111. https://doi.org/10.1016/j.devcel.2012.11.012 CrossRefPubMedGoogle Scholar
  110. 110.
    Cox JE, Thummel CS, Tennessen JM (2017) Metabolomic studies in Drosophila. Genetics 206(3):1169–1185. https://doi.org/10.1534/genetics.117.200014 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Omenn GS (2017) The proteomes of the human eye, a highly compartmentalized organ. Proteomics 17(1–2). https://doi.org/10.1002/pmic.201600340 CrossRefGoogle Scholar
  112. 112.
    Hoffman DR, Uauy R, Birch DG (1995) Metabolism of omega-3 fatty acids in patients with autosomal dominant retinitis pigmentosa. Exp Eye Res 60(3):279–289CrossRefGoogle Scholar
  113. 113.
    Hoffman DR, DeMar JC, Heird WC, Birch DG, Anderson RE (2001) Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa. J Lipid Res 42(9):1395–1401PubMedGoogle Scholar
  114. 114.
    Schaefer EJ, Robins SJ, Patton GM, Sandberg MA, Weigel-DiFranco CA, Rosner B, Berson EL (1995) Red blood cell membrane phosphatidylethanolamine fatty acid content in various forms of retinitis pigmentosa. J Lipid Res 36(7):1427–1433PubMedGoogle Scholar
  115. 115.
    Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895. https://doi.org/10.1016/j.cell.2010.11.033 CrossRefPubMedGoogle Scholar
  116. 116.
    Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598. https://doi.org/10.1038/nrm2934 CrossRefPubMedGoogle Scholar
  117. 117.
    Xu H, Lee SJ, Suzuki E, Dugan KD, Stoddard A, Li HS, Chodosh LA, Montell C (2004) A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO J 23(4):811–822. https://doi.org/10.1038/sj.emboj.7600112 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Nirala NK, Rahman M, Walls SM, Singh A, Zhu LJ, Bamba T, Fukusaki E, Srideshikan SM, Harris GL, Ip YT, Bodmer R, Acharya UR (2013) Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis. PLoS Genet 9(6):e1003556. https://doi.org/10.1371/journal.pgen.1003556 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Griciuc A, Roux MJ, Merl J, Giangrande A, Hauck SM, Aron L, Ueffing M (2014) Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 34(8):2797–2812. https://doi.org/10.1523/JNEUROSCI.2982-13.2014 CrossRefPubMedGoogle Scholar
  120. 120.
    Nichols R, Pak WL (1985) Characterization of Drosophila melanogaster rhodopsin. J Biol Chem 260:12670–12674PubMedGoogle Scholar
  121. 121.
    Steele F, O'Tousa JE (1990) Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant. Neuron 4:883–890CrossRefGoogle Scholar
  122. 122.
    Alloway PG, Howard L, Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138CrossRefGoogle Scholar
  123. 123.
    Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unravelling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176:2189–2200CrossRefGoogle Scholar
  124. 124.
    Bachmann A, Grawe F, Johnson K, Knust E (2008) Drosophila Lin-7 is a component of the crumbs complex in epithelia and photoreceptor cells and prevents light-induced retinal degeneration. Eur J Cell Biol 87:123–136CrossRefGoogle Scholar
  125. 125.
    Chinchore Y, Mitra A, Dolph PJ (2009) Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 5(2):e1000377. https://doi.org/10.1371/journal.pgen.1000377 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Jaiswal M, Haelterman NA, Sandoval H, Xiong B, Donti T, Kalsotra A, Yamamoto S, Cooper TA, Graham BH, Bellen HJ (2015) Impaired mitochondrial energy production causes light-induced photoreceptor degeneration independent of oxidative stress. PLoS Biol 13(7):e1002197. https://doi.org/10.1371/journal.pbio.1002197 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A 102(4):1217–1221. https://doi.org/10.1073/pnas.0409252102 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Leinonen R, Diez FG, Binns D, Fleischmann W, Lopez R, Apweiler R (2004) UniProt archive. Bioinformatics 20(17):3236–3237. https://doi.org/10.1093/bioinformatics/bth191 CrossRefPubMedGoogle Scholar
  129. 129.
    Leonard DS, Bowman VD, Ready DF, Pak WL (1992) Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J Neurobiol 23(6):605–626. https://doi.org/10.1002/neu.480230602 CrossRefPubMedGoogle Scholar
  130. 130.
    Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A 108(34):14198–14203. https://doi.org/10.1073/pnas.1111704108 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Kumar JP, Ready DF (1995) Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121:4359–4370PubMedGoogle Scholar
  132. 132.
    Kramer JM, Staveley BE (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2(1):43–47PubMedGoogle Scholar
  133. 133.
    Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129PubMedGoogle Scholar
  134. 134.
    Luo L, Liao YJ, Jan LY, Jan YN (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8(15):1787–1802CrossRefGoogle Scholar
  135. 135.
    Yao KM, White K (1994) Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system. J Neurochem 63(1):41–51CrossRefGoogle Scholar
  136. 136.
    Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125(18):3741–3751PubMedGoogle Scholar
  137. 137.
    McDonald EC, Xie B, Workman M, Charlton-Perkins M, Terrell DA, Reischl J, Wimmer EA, Gebelein BA, Cook TA (2010) Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events. Dev Biol 347(1):122–132. https://doi.org/10.1016/j.ydbio.2010.08.016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Max-Planck-Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations