Advertisement

Detection of Histone Modification Dynamics during the Cell Cycle by MS-Based Proteomics

  • Moritz Carl Völker-Albert
  • Andreas Schmidt
  • Teresa K. Barth
  • Ignasi Forne
  • Axel Imhof
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1832)

Abstract

DNA replication and subsequent deposition of nucleosomes is critical for the maintenance of the genome and epigenetic inheritance. Experiments using human tissue culture cells harvested at defined stages of the cell cycle can help to elucidate the mechanism of histone deposition and chromatin assembly in detail. Here, we describe a pulsed-SILAC approach to distinguish newly synthesized and deposited histones during S-phase of the cell cycle from parental “old” histones incorporated in previous replications and to decipher posttranslational histone modifications (PTMs).

Key words

SILAC labeling PTM-analysis Mass spectrometry Histone quantitation 

Notes

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, CRC1064-A16).

References

  1. 1.
    Smith PA, Jackson V, Chalkley R (1984) Two-stage maturation process for newly replicated chromatin. Biochemistry 23:1576–1581CrossRefGoogle Scholar
  2. 2.
    Worcel A, Han S, Wong ML (1978) Assembly of newly replicated chromatin. Cell 15:969–977CrossRefGoogle Scholar
  3. 3.
    Alabert C, Barth TK, Reveron-Gomez N et al (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–590CrossRefGoogle Scholar
  4. 4.
    Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861CrossRefGoogle Scholar
  5. 5.
    Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596CrossRefGoogle Scholar
  6. 6.
    Ong S, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell cluture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefGoogle Scholar
  7. 7.
    Alabert C, Bukowski-Wills JC, Lee SB et al (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16:281–293CrossRefGoogle Scholar
  8. 8.
    Scharf AN, Barth TK, Imhof A (2009) Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37:5032–5040CrossRefGoogle Scholar
  9. 9.
    Egertson JD, Maclean B, Johnson R et al (2015) Multiplexed peptide analysis using data-independent acquisition and skyline. Nat Protoc 10:887–903CrossRefGoogle Scholar
  10. 10.
    Völker-Albert MC, Schmidt A, Forne I et al (2017) Analysis of histone modifications by mass spectrometry. Curr Protoc Protein Sci Chapter 14:Unit 14.10Google Scholar
  11. 11.
    Cuomo A, Sanfilippo R, Vaccari T et al (2014) Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies. In: Warscheid B (ed) Stable isotope labeling by amino acids in cell culture (SILAC): methods and protocols. Springer, New York, pp 293–311Google Scholar
  12. 12.
    Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364CrossRefGoogle Scholar
  13. 13.
    Rosenfeld J, Capdevielle J, Guillemot JC et al (1992) In-gel digestion of proteins for internal sequence analysis after one- or two dimensional gel electrophoresis. Anal Biochem 203:173–179CrossRefGoogle Scholar
  14. 14.
    Feller C, Forne I, Imhof A et al (2015) Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell 57:559–571CrossRefGoogle Scholar
  15. 15.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Moritz Carl Völker-Albert
    • 1
  • Andreas Schmidt
    • 2
  • Teresa K. Barth
    • 3
  • Ignasi Forne
    • 2
  • Axel Imhof
    • 1
    • 2
  1. 1.Chromatin Proteomics, Biomedical CenterLudwig Maximilian University of MunichMunichGermany
  2. 2.Protein Analysis Unit, Biomedical CenterLudwig Maximilian University of MunichMunichGermany
  3. 3.Research Unit Protein ScienceHelmholtz Zentrum MünchenMunichGermany

Personalised recommendations