Advertisement

CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A

  • Justin W. C. Leung
  • Lara E. Emery
  • Kyle M. Miller
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1832)

Abstract

Histone H2A variants play important roles in maintaining the integrity of the genome. For example, the histone variant H2AX is phosphorylated on Ser139 (called γH2AX) at DNA double-strand breaks (DSB) and serves as a signal for the initiation of downstream DNA damage response (DDR) factor recruitment and DNA repair activities within damaged chromatin. For decades, genetic studies in human cells involving DNA damage signaling and repair factors have relied mostly on either knockdown by RNA interference (i.e., shRNA and siRNA) or the use of mouse embryonic fibroblasts derived from knockout (KO) mice. Recent advances in gene editing using ZNF nuclease, TALEN, and CRISPR/Cas9 have allowed the generation of human KO cell lines, allowing genetic models for studying the DDR, including histone H2A variants in human cells. Here, we describe a detailed protocol for generating and verifying KO of H2AX and macroH2A histone H2A variants using CRISPR/Cas9 gene editing in human cancer cell lines. This protocol allows the use and development of genetic systems in human cells to study histone variants and their functions, including within the DDR.

Key words

Histone variant H2A H2AX macroH2A Chromatin CRISPR/Cas9 Gene editing DNA damage DNA repair Genome stability 

Notes

Acknowledgments

We thank Fade Gong from the Miller lab for insightful comments on the manuscript. The K.M.M. laboratory is supported by the NIH National Cancer Institute (R01CA198279 and RO1CA201268) and the American Cancer Society (RSG-16-042-01-DMC).

References

  1. 1.
    Khare SP, Habib F, Sharma R et al (2012) HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res 40:D337–D342CrossRefPubMedGoogle Scholar
  2. 2.
    Maze I, Noh KM, Soshnev AA et al (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15:259–271CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18:115–126CrossRefPubMedGoogle Scholar
  4. 4.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  5. 5.
    Musselman CA, Lalonde ME, Cote J et al (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Scully R, Xie A (2013) Double strand break repair functions of histone H2AX. Mutat Res 750:5–14CrossRefPubMedGoogle Scholar
  7. 7.
    Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stucki M, Clapperton JA, Mohammad D et al (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226CrossRefPubMedGoogle Scholar
  10. 10.
    Yuan J, Adamski R, Chen J (2010) Focus on histone variant H2AX: to be or not to be. FEBS Lett 584:3717–3724CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefPubMedGoogle Scholar
  12. 12.
    Khurana S, Kruhlak MJ, Kim J et al (2014) A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep 8:1049–1062CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sansoni V, Casas-Delucchi CS, Rajan M et al (2014) The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res 42:6405–6420CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929CrossRefPubMedGoogle Scholar
  15. 15.
    Tolstorukov MY, Goldman JA, Gilbert C et al (2012) Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell 47:596–607CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu Y, Ayrapetov MK, Xu C et al (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48:723–733CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Monteiro FL, Baptista T, Amado F et al (2014) Expression and functionality of histone H2A variants in cancer. Oncotarget 5:3428–3443CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vardabasso C, Hasson D, Ratnakumar K et al (2014) Histone variants: emerging players in cancer biology. Cell Mol Life Sci 71:379–404CrossRefPubMedGoogle Scholar
  19. 19.
    Buschbeck M, Hake SB (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314CrossRefPubMedGoogle Scholar
  20. 20.
    Gruosso T, Mieulet V, Cardon M et al (2016) Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med 8:527–549CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bibikova M, Beumer K, Trautman JK et al (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764CrossRefPubMedGoogle Scholar
  22. 22.
    Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen WT, Alpert A, Leiter C et al (2013) Systematic identification of functional residues in mammalian histone H2AX. Mol Cell Biol 33:111–126CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weyemi U, Redon CE, Choudhuri R et al (2016) The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun 7:10711CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shimada M, Goshima T, Matsuo H et al (2016) Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nat Commun 7:12059CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leung JW, Makharashvili N, Agarwal P et al (2017) ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev 31:260–274CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293CrossRefPubMedGoogle Scholar
  30. 30.
    Strickfaden H, Hendzel MJ (2017) Immunofluorescence of histone proteins. Methods Mol Biol 1528:165–171CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Justin W. C. Leung
    • 1
    • 2
    • 3
  • Lara E. Emery
    • 1
    • 2
  • Kyle M. Miller
    • 1
    • 2
  1. 1.Department of Molecular BiosciencesThe University of Texas at AustinAustinUSA
  2. 2.Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinUSA
  3. 3.Department of Radiation Oncology, Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations