Advertisement

Plastids pp 55-72 | Cite as

Diversity and Plasticity of Plastids in Land Plants

  • Katalin Solymosi
  • Johanna Lethin
  • Henrik AronssonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1829)

Abstract

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.

Key words

Proplastid Etioplast Chloroplast Chromoplast Leucoplast 

Notes

Acknowledgments

This chapter is dedicated to Professor Győző Garab (Biological Research Centre, Szeged, Hungary) on the occasion of his 70th birthday. The authors are grateful to Csilla Jónás for transmission electron microscopic sample preparation and to Jean-Marc Brillouet (SupAgro, Montpellier, France) for providing micrographs about tannoplast and phenyloplast. This work was supported by Carl Tryggers Foundation (to H.A.), and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities (to K.S.).

References

  1. 1.
    Gunning B, Koenig F, Govindjee PM (2007) A dedication to pioneers of research on chloroplast structure. In: Wise RR, Hoober JK (eds), Advances in photosynthesis and respiration, vol 23., The structure and function of plastids. Springer, New York, pp xxiii–xxxxiGoogle Scholar
  2. 2.
    Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304(5668):253–257. https://doi.org/10.1126/science.1094884 CrossRefPubMedGoogle Scholar
  3. 3.
    Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Rep 6(40). https://doi.org/10.12703/P6-40.eCollection2014
  4. 4.
    Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5(4):174–182CrossRefPubMedGoogle Scholar
  5. 5.
    Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37(6):951–959CrossRefGoogle Scholar
  7. 7.
    Timmis JN, Ayliffe MA, Huang CY et al (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135. https://doi.org/10.1038/nrg1271 CrossRefPubMedGoogle Scholar
  8. 8.
    Syvanen M, Kado CI (2001) Horizontal gene transfer. Academic Press, MassachusettsGoogle Scholar
  9. 9.
    Keeling PJ, Archibald JM (2008) Organelle evolution: what's in a name? Curr Biol 18(8):R345–R347CrossRefPubMedGoogle Scholar
  10. 10.
    Koumandou VL, Nisbet RER, Barbrook AC et al (2004) Dinoflagellate chloroplasts–where have all the genes gone? Trends Genet 20(5):261–267CrossRefPubMedGoogle Scholar
  11. 11.
    Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42(5):482–492CrossRefPubMedGoogle Scholar
  12. 12.
    Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118(1):9–17CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29(3):380–395CrossRefPubMedGoogle Scholar
  14. 14.
    Allen JF (2003) The function of genomes in bioenergetic organelles. Phil Trans R Soc London B Biol Sci 358(1429):19–38CrossRefGoogle Scholar
  15. 15.
    Hagemann R (2010) The foundation of extranuclear inheritance: plastid and mitochondrial genetics. Mol Gen Genomics 283(3):199–209CrossRefGoogle Scholar
  16. 16.
    Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302(5651):1698–1704CrossRefPubMedGoogle Scholar
  17. 17.
    Leech R, Pyke K (1988) Chloroplast division in higher plants with particular reference to wheat. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472. https://doi.org/10.1146/annurev-arplant-050213-035748 CrossRefPubMedGoogle Scholar
  19. 19.
    Sundqvist C, Björn L, Virgin H (1980) Factors in chloroplast differentiation. In: Reinert J (ed), Chloroplasts. Results and Problems in Cell Differentiation, vol 10. Springer, Berlin, Heidelberg, pp 201–224Google Scholar
  20. 20.
    Andersson M, Dörmann P (2009) Chloroplast membrane lipid biosynthesis and transport. In: Sandelius AS, Aronsson H (eds), The chloroplast. Interactions with the Environment, Springer, New York, pp 125–158Google Scholar
  21. 21.
    Block MA, Dorne A-J, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258(21):13281–13286PubMedGoogle Scholar
  22. 22.
    Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J (2009) The chloroplast envelope proteome and lipidome. In: In: Sandelius AS, Aronsson H (eds), The chloroplast. Interactions with the Environment, Springer, New York, pp 41–88Google Scholar
  23. 23.
    Spetea C, Aronsson H (2012) Mechanisms of transport across membranes in plant chloroplasts. Curr Chem Biol 6(3):230–243CrossRefGoogle Scholar
  24. 24.
    Wellburn A, Quail P, Gunning B (1977) Examination of ribosome-like particles in isolated prolamellar bodies. Planta 134(1):45–52CrossRefPubMedGoogle Scholar
  25. 25.
    Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7(7):1105–1120CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ahmed T, Yin Z, Bhushan S (2016) Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Sci Rep 6:35793CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D (2015) Chloroplast SRP54 was recruited for posttranslational protein transport via complex formation with chloroplast SRP43 during land plant evolution. J Biol Chem 290(21):13104–13114CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17(5):421–425CrossRefGoogle Scholar
  29. 29.
    Kolodner R, Tewari K (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402(3):372–390CrossRefPubMedGoogle Scholar
  30. 30.
    Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6(6):279–282CrossRefPubMedGoogle Scholar
  31. 31.
    Solymosi K, Keresztes Á (2012) Plastid structure, diversification and interconversions II. Land plants. Curr Chem Biol 6(3):187–204CrossRefGoogle Scholar
  32. 32.
    Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18(4):186–194CrossRefPubMedGoogle Scholar
  33. 33.
    Brangeon J, Mustardy L (1979) Ontogenetic assembly of intra-chloroplastic lamellae viewed in 3-dimension. Biol Cell 36:71–80Google Scholar
  34. 34.
    Lindquist E, Solymosi K, Aronsson H (2016) Vesicles are persistent features of different plastids. Traffic 17(10):1125–1138CrossRefPubMedGoogle Scholar
  35. 35.
    Solymosi K, Aronsson H (2013) Etioplasts and their significance in chloroplast biogenesis. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, Vol 36, plastid development in leaves during growth and senescence. Springer, New York, pp 39–71CrossRefGoogle Scholar
  36. 36.
    Ytterberg AJ, Peltier J-B, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158(3):1172–1192CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 1847(9):889–899CrossRefPubMedGoogle Scholar
  40. 40.
    Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272CrossRefGoogle Scholar
  41. 41.
    Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105(2):123–134CrossRefPubMedGoogle Scholar
  42. 42.
    Karim S, Alezzawi M, Garcia-Petit C, Solymosi K, Khan NZ, Lindquist E, Dahl P, Hohmann S, Aronsson H (2014) A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol Biol 84(6):675–692CrossRefPubMedGoogle Scholar
  43. 43.
    Robinson DG, Brandizzi F, Hawes C, Nakano A (2015) Vesicles versus tubes: is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes? Plant Physiol 168(2):393–406CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Khan NZ, Lindquist E, Aronsson H (2013) New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 8(4):e59898CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J 63(1):73–85. https://doi.org/10.1111/j.1365-313X.2010.04225.x CrossRefPubMedGoogle Scholar
  46. 46.
    Szczepanik J, Sowiński P (2014) The occurrence of chloroplast peripheral reticulum in grasses: a matter of phylogeny or a matter of function? Acta Physiol Plant 36(5):1133–1142CrossRefGoogle Scholar
  47. 47.
    Khandakar K, Bradbeer JW (1989) Primary leaf growth in bean (Phaseolus vulgaris). Cytologia 54(3):409–417CrossRefGoogle Scholar
  48. 48.
    Lopez-Juez E, Pyke KA (2004) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49(5–6):557–577Google Scholar
  49. 49.
    Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202(2):211–219CrossRefGoogle Scholar
  50. 50.
    Boland MJ, Schubert KR (1983) Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch Biochem Biophys 220(1):179–187CrossRefPubMedGoogle Scholar
  51. 51.
    Wise RR (2007) The diversity of plastid form and function. In: Wise RR, Hoober JK (eds), Advances in photosynthesis and respiration Vol. 23, the structure and function of plastids. Springer, New York, pp 3–26Google Scholar
  52. 52.
    Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta 1847(9):1017–1024CrossRefPubMedGoogle Scholar
  53. 53.
    Solymosi K, Morandi D, Bóka K, Böddi B, Schoefs B (2012) High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds. Planta 235(5):1035–1049CrossRefPubMedGoogle Scholar
  54. 54.
    Vitányi B, Kósa A, Solymosi K, Böddi B (2013) Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiol Plant 148(2):307–315CrossRefPubMedGoogle Scholar
  55. 55.
    Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105(2):143–166CrossRefPubMedGoogle Scholar
  56. 56.
    Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54(2):148–159CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, Mckenna JF, Máthé C, Runions J, Van Damme D, Mathur J (2016) Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol 171(2):723–726PubMedGoogle Scholar
  58. 58.
    Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X (2017) Light deprivation-induced inhibition of chloroplast biogenesis does not arrest embryo morphogenesis but strongly reduces the accumulation of storage reserves during embryo maturation in Arabidopsis. Front Plant Sci 8:1287CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20(10):2552–2557CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gunning BE, Steer MW (1975) Ultrastructure and the biology of plant cells. Arnold, LondonGoogle Scholar
  61. 61.
    Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31(1):131–148CrossRefGoogle Scholar
  62. 62.
    Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720CrossRefPubMedGoogle Scholar
  63. 63.
    Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016CrossRefPubMedGoogle Scholar
  64. 64.
    Thomson W, Whatley JM (1980) Development of nongreen plastids. Annu Rev Plant Physiol 31(1):375–394CrossRefGoogle Scholar
  65. 65.
    Newcomb EH (1967) Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33(1):143–163CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Juneau P, Le Lay P, Böddi B, Samson G, Popovic R (2002) Relationship between the structural and functional changes of the photosynthetic apparatus during chloroplast–chromoplast transition in flower bud of Lilium longiflorum. Photochem Photobiol 75(4):377–381CrossRefPubMedGoogle Scholar
  67. 67.
    Devidé Z, Ljubešić N (1974) The reversion of chromoplasts to chloroplasts in pumpkin fruits. Z Pflanzenphysiol 73(4):296–306CrossRefGoogle Scholar
  68. 68.
    Grönegress P (1971) The greening of chromoplasts in Daucus carota L. Planta 98(3):274–278CrossRefPubMedGoogle Scholar
  69. 69.
    Whatley J (1985) Chromoplasts in some cycads. New Phytol 101(4):595–604CrossRefGoogle Scholar
  70. 70.
    Ljubesic N, Wrischer M, Devide Z (1991) Chromoplasts - the last stages in plastid development. Int J Dev Biol 35:251–258Google Scholar
  71. 71.
    Simpson D, Baqar M, Lee T (1977) Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Z Pflanzenphysiol 83(4):293–308CrossRefGoogle Scholar
  72. 72.
    Liedvogel B, Sitte P, Falk H (1976) Chromoplasts in the daffodil: fine structure and chemistry. Cytobiologie 12:155–174Google Scholar
  73. 73.
    Mulisch M, Krupinska K (2013) Ultrastructural analyses of senescence associated dismantling of chloroplasts revisited. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, vol 36., Plastid Development In Leaves During Growth and Senescence. Springer, New York, pp 307–335Google Scholar
  74. 74.
    Solymosi K, Tuba Z, Böddi B (2013) Desiccoplast–etioplast–chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. J Plant Physiol 170(6):583–590CrossRefPubMedGoogle Scholar
  75. 75.
    Ingle, RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N (2008) Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast–chloroplast transition. Plant, Cell and Environment 31: 1813–1824CrossRefGoogle Scholar
  76. 76.
    Sheue C-R, Sarafis V, Kiew R, Liu H-Y, Salino A, Kuo-Huang L-L, Yang Y-P, Tsai C-C, Lin C-H, Yong JW (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am J Bot 94(12):1922–1929CrossRefPubMedGoogle Scholar
  77. 77.
    Sheue C-R, Liu J-W, Ho J-F, Yao A-W, Wu Y-H, Das S, Tsai C-C, Chu H-A, Ku MS, Chesson P (2015) A variation on chloroplast development: the bizonoplast and photosynthetic efficiency in the deep-shade plant Selaginella erythropus. Am J Bot 102(4):500–511CrossRefPubMedGoogle Scholar
  78. 78.
    Jacobs M, Lopez-Garcia M, Phrathep O-P, Lawson T, Oulton R, Whitney HM (2016) Photonic multilayer structure of begonia chloroplasts enhances photosynthetic efficiency. Nat Plants 2:16162CrossRefPubMedGoogle Scholar
  79. 79.
    Brillouet J-M, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112(6):1003–1014CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Brillouet J-M, Romieu C, Lartaud M, Jublanc E, Torregrosa L, Cazevieille C (2014) Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions. Protoplasma 251(6):1387–1393CrossRefPubMedGoogle Scholar
  81. 81.
    Brillouet J-M, Verdeil J-L, Odoux E, Lartaud M, Grisoni M, Conéjéro G (2014) Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast. J Exp Bot 65(9):2427–2435CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Katalin Solymosi
    • 1
  • Johanna Lethin
    • 2
  • Henrik Aronsson
    • 2
    Email author
  1. 1.Department of Plant Anatomy, Institute of BiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations