Advertisement

Plastids pp 381-394 | Cite as

In Silico Tools for the Prediction of Protein Import into Secondary Plastids

  • Daniel Moog
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1829)

Abstract

The in silico identification of proteins targeting to secondary plastids is a difficult task. Such plastids are complex in structure and can be surrounded by up to four membranes, which have to be crossed during import. Nucleus-encoded plastidial preproteins in organisms with secondary plastids contain specific N-terminal targeting signals, the so-called bipartite targeting signal (BTS) sequences consisting of a classical signal peptide followed by a transit peptide-like sequence, mediating this intricate process. As these signal sequences differ significantly from transit peptides of plastid preproteins in plants and other organisms with primary plastids, existing in silico tools for primary plastid targeting prediction are not directly suitable to detect nucleus-encoded proteins destined for the import into secondary plastids. In this chapter I describe the current state-of-the-art methods to reliably predict proteins that might be imported into secondary plastids of red- and green-algal origin using either the “classical” approach, which involves a combination of bits of information produced by existing in silico tools, or, if available, via consulting specifically developed algorithms.

Key words

Targeting prediction Secondary plastids In silico tools Protein import Targeting signals 

Notes

Acknowledgment

This work was supported by the Philipps University of Marburg. The author likes to thank Uwe Maier and Stefan Zauner for helpful discussions.

References

  1. 1.
    Bendtsen JD, Nielsen H, von Heijne G et al (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefPubMedGoogle Scholar
  2. 2.
    Emanuelsson O, Nielsen H, Brunak S et al (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016CrossRefGoogle Scholar
  3. 3.
    Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Small I, Peeters N, Legeai F et al (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590CrossRefPubMedGoogle Scholar
  5. 5.
    Petsalaki EI, Bagos PG, Litou ZI et al (2006) PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics 4:48–55CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nielsen H, Engelbrecht J, Brunak S et al (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefPubMedGoogle Scholar
  7. 7.
    Gentil J, Hempel F, Moog D et al (2017) Review: origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 254(5):1835–1843CrossRefPubMedGoogle Scholar
  8. 8.
    Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond Ser B Biol Sci 365:729–748CrossRefGoogle Scholar
  9. 9.
    Maier UG, Zauner S, Hempel F (2015) Protein import into complex plastids: cellular organization of higher complexity. Eur J Cell Biol 94:340–348CrossRefPubMedGoogle Scholar
  10. 10.
    Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65CrossRefGoogle Scholar
  11. 11.
    Gould SB, Sommer MS, Hadfi K et al (2006) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681CrossRefPubMedGoogle Scholar
  12. 12.
    Gruber A, Vugrinec S, Hempel F et al (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530CrossRefPubMedGoogle Scholar
  13. 13.
    Moog D, Stork S, Zauner S et al (2011) In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol 3:375–382CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stork S, Lau J, Moog D et al (2013) Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250:1013–1023CrossRefPubMedGoogle Scholar
  15. 15.
    Hirakawa Y, Burki F, Keeling PJ (2012) Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell 11:324–333CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hirakawa Y, Nagamune K, Ishida K (2009) Protein targeting into secondary plastids of chlorarachniophytes. Proc Natl Acad Sci U S A 106:12820–12825CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hirakawa Y, Ishida K (2010) Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga. Plant J 64:402–410CrossRefPubMedGoogle Scholar
  18. 18.
    Hirakawa Y, Gile GH, Ota S et al (2010) Characterization of periplastidal compartment-targeting signals in chlorarachniophytes. Mol Biol Evol 27:1538–1545CrossRefPubMedGoogle Scholar
  19. 19.
    Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29:1048–1058CrossRefPubMedGoogle Scholar
  20. 20.
    Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9:393CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cilingir G, Broschat SL, Lau AO (2012) ApicoAP: the first computational model for identifying apicoplast-targeted proteins in multiple species of Apicomplexa. PLoS One 7:e36598CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mernberger M, Moog D, Stork S et al (2014) Protein sub-cellular localization prediction for special compartments via optimized time series distances. J Bioinforma Comput Biol 12:1350016CrossRefGoogle Scholar
  24. 24.
    Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abeel T, Van Parys T, Saeys Y et al (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res 40:e12CrossRefPubMedGoogle Scholar
  26. 26.
    Moog D, Stork S, Reislohner S et al (2015) In vivo localization studies in the stramenopile alga Nannochloropsis oceanica. Protist 166:161–171CrossRefPubMedGoogle Scholar
  27. 27.
    Gruber A, Kroth PG (2014) Deducing intracellular distributions of metabolic pathways from genomic data. Methods Mol Biol 1083:187–211CrossRefPubMedGoogle Scholar
  28. 28.
    Foth BJ, Ralph SA, Tonkin CJ et al (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708CrossRefPubMedGoogle Scholar
  29. 29.
    Felsner G, Sommer MS, Maier UG (2010) The physical and functional borders of transit peptide-like sequences in secondary endosymbionts. BMC Plant Biol 10:223CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefGoogle Scholar
  31. 31.
    Bernsel A, Viklund H, Hennerdal A et al (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zuegge J, Ralph S, Schmuker M et al (2001) Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280:19–26CrossRefPubMedGoogle Scholar
  33. 33.
    Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  34. 34.
    Bendtsen JD, Nielsen H, Widdick D et al (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dilks K, Rose RW, Hartmann E et al (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bagos PG, Nikolaou EP, Liakopoulos TD et al (2010) Combined prediction of tat and sec signal peptides with hidden Markov models. Bioinformatics 26:2811–2817CrossRefPubMedGoogle Scholar
  37. 37.
    Gile GH, Moog D, Slamovits CH et al (2015) Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol 7:1728–1742CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hirakawa Y, Burki F, Keeling PJ (2012) Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes. J Cell Sci 125:6176–6184CrossRefPubMedGoogle Scholar
  39. 39.
    Jackson KE, Pham JS, Kwek M et al (2012) Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Int J Parasitol 42:177–186CrossRefPubMedGoogle Scholar
  40. 40.
    Moog D, Rensing SA, Archibald JM et al (2015) Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol 7:2955–2969CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Cell BiologyPhilipps University MarburgMarburgGermany

Personalised recommendations