Plastids pp 341-365 | Cite as

Genetic Analysis of Chloroplast Biogenesis, and Function and Mutant Collections

  • Sho Fujii
  • Hajime Wada
  • Koichi KobayashiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1829)


Since the time DNA was discovered as the code of life, genetic analysis has greatly advanced our understanding of the relation between genotype and phenotype and associated molecular mechanisms in various organisms including plants and algae. Forward genetics from phenotype to genotype has identified causal genes of interesting phenotypes induced by chemical, ionizing-radiation, or DNA insertional mutagenesis. Meanwhile, reverse genetics from genotype to phenotype has revealed physiological and molecular roles of known gene sequences. During the past dozen years, many molecular genetic tools have been developed to investigate gene functions quickly and efficiently. In this chapter, we introduce several approaches of forward and reverse genetics, including random chemical and DNA insertional mutagenesis, activation tagging, RNA interference, and gene overexpression and induction systems, with some examples of genetic studies of chloroplast biology mainly in Arabidopsis thaliana. We also briefly describe methods for chemical and DNA insertion mutagenesis and how to obtain sequence-tagged mutants from public collections. With greatly improved DNA sequencing and genome-editing technologies, model organisms as well as diverse species can be used for molecular biology. Genetic analysis can play an increasingly important role in elucidating chloroplast biogenesis and functions.

Key words

Arabidopsis Chloroplast Forward genetics Reverse genetics Chlorophyll Photosynthesis Mutant 


  1. 1.
    Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44CrossRefPubMedGoogle Scholar
  2. 2.
    Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802CrossRefPubMedGoogle Scholar
  3. 3.
    Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536CrossRefPubMedGoogle Scholar
  4. 4.
    Niyogi KK, Björkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740PubMedPubMedCentralGoogle Scholar
  6. 6.
    Thole JM, Strader LC (2015) Next-generation sequencing as a tool to quickly identify causative EMS-generated mutations. Plant Signal Behav 10:1–4CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lightner J, Caspar T (1998) Seed mutagenesis of Arabidopsis. In: Martínez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 91–102CrossRefGoogle Scholar
  8. 8.
    Zupan J, Muth TR, Draper O et al (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28CrossRefPubMedGoogle Scholar
  9. 9.
    Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451CrossRefPubMedGoogle Scholar
  10. 10.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  11. 11.
    Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J 61:519–528CrossRefPubMedGoogle Scholar
  12. 12.
    Singer T, Burke E (2003) High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. In: Grotewold E (ed) Plant functional genomics. Humana Press, Totowa, pp 241–272CrossRefGoogle Scholar
  13. 13.
    Logemann E, Birkenbihl RP, Ulker B et al (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Long D, Martin M, Sundberg E et al (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci U S A 90:10370–10374CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aarts MGM, Corzaan P, Stiekema WJ et al (1995) A two-element enhancer-inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet 247:555–564CrossRefPubMedGoogle Scholar
  17. 17.
    Weigel D, Ahn JH, Blázquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrosco. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  19. 19.
    Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  20. 20.
    Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar
  21. 21.
    Pontier D, Albrieux C, Joyard J et al (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282:2297–2304CrossRefPubMedGoogle Scholar
  22. 22.
    Tottey S, Block MA, Allen M et al (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci U S A 100:16119–16124CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schlicke H, Salinas A, Firtzlaff V et al (2014) Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole- mediated retrograde signaling. Mol Plant 7:1211–1227CrossRefPubMedGoogle Scholar
  24. 24.
    von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057CrossRefGoogle Scholar
  25. 25.
    Meskauskiene R, Nater M, Goslings D et al (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:12826–12831CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Armstead I, Donnison I, Aubry S et al (2007) Cross-species identification of Mendel’s I locus. Science 315:73–73CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang H, Li M, Liang N et al (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209CrossRefPubMedGoogle Scholar
  28. 28.
    Park S-Y, Yu J-W, Park J-S et al (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ren G, An K, Liao Y et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sato Y, Morita R, Nishimura M et al (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci U S A 104:14169–14174CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kusaba M, Ito H, Morita R et al (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998CrossRefPubMedGoogle Scholar
  34. 34.
    Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113CrossRefPubMedGoogle Scholar
  35. 35.
    Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li XP, Bjorkman O, Shih C et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395CrossRefPubMedGoogle Scholar
  37. 37.
    Shikanai T, Munekage Y, Shimizu K et al (1999) Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol 40:1134–1142CrossRefPubMedGoogle Scholar
  38. 38.
    Munekage Y, Takeda S, Endo T et al (2001) Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359CrossRefPubMedGoogle Scholar
  39. 39.
    Munekage Y, Hojo M, Meurer J et al (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371CrossRefGoogle Scholar
  40. 40.
    Meurer J, Meierhoff K, Westhoff P (1996) Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and Northern hybridisation. Planta 49:385–396CrossRefGoogle Scholar
  41. 41.
    Kroll D, Meierhoff K, Bechtold N et al (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci U S A 98:4238–4242CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Varotto C, Pesaresi P, Meurer J et al (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22:115–124CrossRefPubMedGoogle Scholar
  43. 43.
    Pyke KA, Leech RM (1991) Rapid image analysis screening procedure for identifying chloroplast number mutants in mesophyll cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol 96:1193–1195CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pyke KA, Leech RM (1992) Chloroplast division and expansion is radically altered by nuclear mutations in Arabidopsis thaliana. Plant Physiol 99:1005–1008CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nott A, Jung H-S, Koussevitzky S et al (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759CrossRefPubMedGoogle Scholar
  46. 46.
    Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799CrossRefPubMedGoogle Scholar
  47. 47.
    Mochizuki N, Brusslan J, Larkin R et al (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 98:2053–2058CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koussevitzky S, Nott A, Mockler TC et al (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719CrossRefPubMedGoogle Scholar
  49. 49.
    Larkin RM, Alonso JM, Ecker JR et al (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906CrossRefPubMedGoogle Scholar
  50. 50.
    Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Millar AJ, Carre IA, Strayer CA et al (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1164CrossRefPubMedGoogle Scholar
  52. 52.
    Alabadi D, Oyama T, Yanovsky MJ et al (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883CrossRefPubMedGoogle Scholar
  53. 53.
    López-Juez E, Jarvis RP, Takeuchi A et al (1998) New Arabidopsis cue mutants suggest a close connection between plastid- and phytochrome regulation of nuclear gene expression. Plant Physiol 118:803–815CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li H, Culligan K, Dixon RA et al (1995) CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7:1599–1610CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wagner D, Przybyla D, op den Camp R et al (2004) The genetic basis of singlet oxygen–induced stress responses of Arabidopsis thaliana. Science 306:1183–1186CrossRefPubMedGoogle Scholar
  56. 56.
    Li Z, Ahn TK, Avenson TJ et al (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dörmann P, Hoffmann-Benning S, Balbo I et al (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7:1801–1810CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dörmann P, Balbo I, Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284:2181–2184CrossRefPubMedGoogle Scholar
  59. 59.
    Xu C, Fan J, Riekhof W et al (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Awai K, Xu C, Tamot B et al (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci U S A 103:10817–10822CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285CrossRefPubMedGoogle Scholar
  62. 62.
    Jarvis P, Chen LJ, Li H et al (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–103CrossRefPubMedGoogle Scholar
  63. 63.
    Ling Q, Huang W, Baldwin A et al (2012) Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338:655–659CrossRefPubMedGoogle Scholar
  64. 64.
    Chow KS, Singh DP, Walker AR et al (1998) Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant J 15:531–541CrossRefPubMedGoogle Scholar
  65. 65.
    Woodson JD, Joens MS, Sinson AB et al (2015) Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science 350:450–454CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Li J, Chory J (1998) Preparation of DNA from Arabidopsis. In: Martínez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 55–60CrossRefGoogle Scholar
  67. 67.
    Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812CrossRefPubMedGoogle Scholar
  70. 70.
    Waters MT, Wang P, Korkaric M et al (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kobayashi K, Baba S, Obayashi T et al (2012) Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24:1081–1095CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kobayashi K, Sasaki D, Noguchi K et al (2013) Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. Plant Cell Physiol 54:1365–1377CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J 56:432–444CrossRefPubMedGoogle Scholar
  74. 74.
    Craft J, Samalova M, Baroux C et al (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918CrossRefPubMedGoogle Scholar
  75. 75.
    Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273CrossRefPubMedGoogle Scholar
  76. 76.
    Kobayashi K, Kondo M, Fukuda H et al (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci U S A 104:17216–17221CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fujii S, Kobayashi K, Nakamura Y et al (2014) Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol 166:1436–1449CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Fujii S, Kobayashi K, Nagata N et al (2017) Monogalactosyldiacylglycerol facilitates synthesis of photoactive protochlorophyllide in etioplasts. Plant Physiol 174:2183–2198CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lu R, Martin-Hernandez AM, Peart JR et al (2003) Virus-induced gene silencing in plants. Methods 30:296–303CrossRefPubMedGoogle Scholar
  80. 80.
    Hey D, Rothbart M, Herbst J et al (2017) LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol 174:1037–1050CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84CrossRefPubMedGoogle Scholar
  82. 82.
    Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82:393–412CrossRefPubMedGoogle Scholar
  83. 83.
    Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58:46–56CrossRefPubMedGoogle Scholar
  84. 84.
    Kim Y, Schumaker KS, Zhu J-K (2006) EMS mutagenesis of Arabidopsis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols. Humana Press, Totowa, pp 101–104CrossRefGoogle Scholar
  85. 85.
    Hirono Y, Rédei GP (1963) Multiple allelic control of chlorophyll b level in Arabidopsis thaliana. Nature 197:1324–1325CrossRefGoogle Scholar
  86. 86.
    Martínez-Zapater JM (1993) Genetic analysis of variegated mutants in Arabidopsis. J Hered 84:138–140CrossRefGoogle Scholar
  87. 87.
    Motohashi R, Nagata N, Ito T et al (2001) An essential role of a TatC homologue of a ΔpH- dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:10499–10504CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Albrecht-Borth V, Kauss D, Fan D et al (2013) A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. Plant Physiol 163:732–745CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jarvis P, Dörmann P, Peto CA et al (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci U S A 97:8175–8179CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Fitter DW, Martin DJ, Copley MJ et al (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727CrossRefPubMedGoogle Scholar
  91. 91.
    Huang Y-S, Li H-M (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Shin J, Kim K, Kang H et al (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci U S A 106:7660–7665CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.Faculty of Liberal Arts and SciencesOsaka Prefecture UniversitySakaiJapan

Personalised recommendations