Advertisement

Plastids pp 325-339 | Cite as

Rescue of Deletion Mutants to Isolate Plastid Transformants in Higher Plants

  • Mohammad El Hajj
  • Mohd Fahdli Bin Hamdan
  • Elena Martin Avila
  • Anil Day
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1829)

Abstract

Plastid transformation is an attractive alternative to nuclear transformation enabling manipulation of native plastid genes and the insertion of foreign genes into plastids for applications in agriculture and industrial biotechnology. Transformation is achieved using dominant positive selection markers that confer resistance to antibiotics. The very high copy number of plastid DNA means that a prolonged selection step is required to obtain a uniform population of transgenic plastid genomes. Repair of mutant plastid genes with the corresponding functional allele allows selection based on restoration of the wild type phenotype. The use of deletion rather than point mutants avoids spontaneous reversion back to wild type. Combining antibiotic resistance markers with native plastid genes speeds up the attainment of homoplasmy and allows early transfer of transplastomic lines to soil where antibiotic selection is replaced by selection for photoautotrophic growth. Here we describe our method using the wild type rbcL gene as a plastid transformation marker to restore pigmentation and photosynthesis to a pale green heterotrophic rbcL mutant.

Key words

Chloroplast transformation Plastid transformation Nicotiana tabacum Tobacco Transplastomic plants Aminoglycoside 3″-adenylyltransferase aadA Homologous recombination Large subunit of ribulose bisphosphate carboxylase/oxygenase LS RuBisCO rbcL Genome editing 

Notes

Acknowledgments

Supported in part by the Biotechnology and Biological Sciences Research Council (BB/I011552/1) and a University of Manchester (investment in success award). MEH was supported by a President’s Doctoral Scholar Award (University of Manchester), MFBH by the University Malaysia Terengganu and EMA by a Biotechnology and Biological Sciences Research Council PhD studentship.

References

  1. 1.
    Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917CrossRefGoogle Scholar
  2. 2.
    Ruf S, Hermann M, Berger IJ et al (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875CrossRefGoogle Scholar
  3. 3.
    Kanamoto H, Yamashita A, Asao H et al (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217CrossRefGoogle Scholar
  4. 4.
    Lelivelt CLC, McCabe MS, Newell CA et al (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774CrossRefGoogle Scholar
  5. 5.
    Schneider A, Stelljes C, Adams C et al (2015) Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Res 24:267–277CrossRefGoogle Scholar
  6. 6.
    Dufourmantel N, Pelissier B, Garcon F et al (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489CrossRefGoogle Scholar
  7. 7.
    Avila EM, Day A (2014) Stable plastid transformation of petunia. Methods Mol Biol 1132:277–293CrossRefGoogle Scholar
  8. 8.
    Zubko MK, Zubko EI, van Zuilen K et al (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530CrossRefGoogle Scholar
  9. 9.
    Avila EM, Gisby MF, Day A (2016) Seamless editing of the chloroplast genome in plants. BMC Plant Biol 16(1):168. https://doi.org/10.1186/s12870-016-0857-6CrossRefGoogle Scholar
  10. 10.
    Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. Top Curr Genet 19:65–119CrossRefGoogle Scholar
  11. 11.
    Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241CrossRefGoogle Scholar
  12. 12.
    Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176CrossRefGoogle Scholar
  13. 13.
    De Cosa B, Moar W, Lee SB et al (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74CrossRefGoogle Scholar
  14. 14.
    Lu YH, Stegemann S, Agrawal S et al (2017) Horizontal transfer of a synthetic metabolic pathway between plant species. Curr Biol 27:3034–3041.e3. https://doi.org/10.1016/j.cub.2017.08.044CrossRefPubMedGoogle Scholar
  15. 15.
    Madesis P, Osathanunkul M, Georgopoulou U et al (2010) A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J Biotechnol 145:377–386CrossRefGoogle Scholar
  16. 16.
    Gisby MF, Mellors P, Madesis P et al (2011) A synthetic gene increases TGF beta 3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol J 9:618–628CrossRefGoogle Scholar
  17. 17.
    Zoschke R, Liere K, Borner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722CrossRefGoogle Scholar
  18. 18.
    Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553CrossRefGoogle Scholar
  19. 19.
    Tabatabaei I, Ruf S, Bock R (2017) A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Mol Biol 93:269–281CrossRefGoogle Scholar
  20. 20.
    Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12:697–701CrossRefGoogle Scholar
  21. 21.
    Gisby MF, Mudd EA, Day A (2012) Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiol 160:2219–2226CrossRefGoogle Scholar
  22. 22.
    Boynton JE, Gillham NW, Harris EH et al (1988) Chloroplast transformation in Chlamydomonas with high-velocity microprojectiles. Science 240:1534–1538CrossRefGoogle Scholar
  23. 23.
    Klaus SMJ, Huang FC, Eibl C et al (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J 35:811–821CrossRefGoogle Scholar
  24. 24.
    Kode V, Mudd EA, Iamtham S et al (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909CrossRefGoogle Scholar
  25. 25.
    Day A (2003) Antibiotic resistance genes in transgenic plants: their origins, undesirability and technologies for their elimination from genetically modified crops. In: Stewart CN (ed) Transgenic plants: current innovations and future trends. Horizon Scientific Press, Wymondham, pp 111–156Google Scholar
  26. 26.
    Day A, Kode V, Madesis P, Iamtham S (2004) Simple and efficient removal of marker genes from plastids by homologous recombination. In: Peña L (ed) Transgenic plants: methods and protocols. Humana Press, Totowa, NJ, pp 255–269CrossRefGoogle Scholar
  27. 27.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. 28.
    Finer JJ, Vain P, Jones MW et al (1992) Development of the particle inflow gun for DNA delivery to plant-cells. Plant Cell Rep 11:323–328CrossRefGoogle Scholar
  29. 29.
    Sugiura M, Shinozaki K, Zaita N et al (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments - mapping of 11 ribosomal-protein genes. Plant Sci 44:211–217Google Scholar
  30. 30.
    Twigg AJ, Sherratt D (1980) Trans-complementable copy-number mutants of plasmid Col E1. Nature 283:216–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad El Hajj
    • 1
  • Mohd Fahdli Bin Hamdan
    • 1
  • Elena Martin Avila
    • 1
  • Anil Day
    • 1
  1. 1.School of Biological SciencesThe University of ManchesterManchesterUK

Personalised recommendations