The Assembly of Fluorescently Labeled Peptide–Oligonucleotide Conjugates via Orthogonal Ligation Strategies

  • John Karas
  • Bradley J. Turner
  • Fazel ShabanpoorEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1828)


Efficient intracellular delivery is critical to the successful application of synthetic antisense oligonucleotides (ASOs) to modulate gene expression. The conjugation of cell-penetrating peptides (CPPs) to ASOs has been shown to significantly improve their intracellular delivery. It is important, however, that formation of the covalent linkage between the peptide and oligonucleotide is efficient and orthogonal, to ensure high yields and a homogeneous product. Described herein are efficient and facile methodologies for the conjugation of peptides to ASOs, and their subsequent labeling with various moieties such as fluorescent dyes for intracellular tracking studies.

Key words

Peptides Oligonucleotides Conjugation Fluorescent labeling Alkyne–azide 



This work was supported by MND Research Institute of Australia (MNDRIA GIA-1722), National Health and Medical Research Council (Project Grant 1104299), and the Stafford Fox Medical Research Foundation.


  1. 1.
    Aartsma-Rus A, Krieg AM (2017) FDA approves Eteplirsen for Duchenne muscular dystrophy: the next chapter in the Eteplirsen saga. Nucleic Acids Ther 27(1):1–3. CrossRefGoogle Scholar
  2. 2.
    Biogen (2016) SPINRAZA_READINESS. http://www.spinraza-hcpcom
  3. 3.
    Betts C, Saleh AF, Arzumanov AA et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 1:e38. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Saleh AF, Arzumanov AA, Yin H et al (2011) Enhancement of exon skipping and dystrophin production by 3′-peptide conjugates of morpholino (PMO) oligonucleotides in a mdx mouse model of Duchenne muscular dystrophy. Collection symposium series. Chem Nucl Acid Comp 12:292–296CrossRefGoogle Scholar
  5. 5.
    Shabanpoor F, McClorey G, Saleh AF et al (2015) Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res 43(1):29–39. CrossRefPubMedGoogle Scholar
  6. 6.
    Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yin H, Saleh AF, Betts C et al (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19(7):1295–1303. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boisguerin P, Deshayes S, Gait MJ et al (2015) Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 87:52–67. CrossRefPubMedGoogle Scholar
  9. 9.
    Boisguerin P, O'Donovan L, Gait MJ et al (2015) In vitro assays to assess exon skipping in Duchenne muscular dystrophy. Methods Mol Biol 1324:317–329. CrossRefPubMedGoogle Scholar
  10. 10.
    Lehto T, Ezzat K, Wood MJ et al (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106(Pt A):172–182. CrossRefPubMedGoogle Scholar
  11. 11.
    Shabanpoor F, Hammond SM, Abendroth F et al (2017) Identification of a peptide for systemic brain delivery of a Morpholino oligonucleotide in mouse models of spinal muscular atrophy. Nucleic Acids Ther 27(3):130–143. CrossRefGoogle Scholar
  12. 12.
    Shabanpoor F, Gait MJ (2013) Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry. Chem Commun (Camb) 49(87):10260–10262. CrossRefGoogle Scholar
  13. 13.
    Said Hassane F, Saleh AF, Abes R et al (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726. CrossRefGoogle Scholar
  14. 14.
    Farrelly-Rosch A, Lau CL, Patil N et al (2017) Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 108:213–221. CrossRefPubMedGoogle Scholar
  15. 15.
    Ulrich S, Boturyn D, Marra A et al (2014) Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry 20(1):34–41. CrossRefPubMedGoogle Scholar
  16. 16.
    Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047. CrossRefPubMedGoogle Scholar
  17. 17.
    Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130(41):13518–13519. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koniev O, Wagner A (2015) Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 44(15):5495–5551. CrossRefPubMedGoogle Scholar
  19. 19.
    Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • John Karas
    • 1
  • Bradley J. Turner
    • 2
  • Fazel Shabanpoor
    • 2
    • 3
    Email author
  1. 1.Pharmacology and TherapeuticsThe University of MelbourneMelbourneAustralia
  2. 2.The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneAustralia
  3. 3.School of ChemistryThe University of MelbourneMelbourneAustralia

Personalised recommendations