Advertisement

Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping

  • Rika Maruyama
  • Toshifumi Yokota
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1828)

Abstract

Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by mutations in the DMD gene. Antisense-mediated exon skipping is a promising strategy to treat DMD. The approval of Exondys 51 (eteplirsen) targeting exon 51 was the most noteworthy accomplishment in 2016. To evaluate and optimize the sequence of antisense oligonucleotides (AOs), muscle cell lines with DMD mutations are useful tools. However, there are only several immortalized muscle cell lines with DMD mutations available that can be used to test the efficacy of exon skipping in vitro. In addition, an invasive muscle biopsy is required to obtain muscle cells from patients. Furthermore, many DMD mutations are very rare and it is hard to find a patient with a specific mutation for muscle biopsy in many cases. Here, we describe a novel approach to create an immortalized muscle cell line with a DMD deletion mutation using the human rhabdomyosarcoma (RD) cell line and the CRISPR/Cas9 system that can be used to test the efficacy of exon skipping.

Key words

Exon skipping/inclusion Antisense oligonucleotides (AOs) Splice switching oligonucleotides (SSOs) Duchenne/Becker muscular dystrophy (DMD/BMD) Clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 (CRISPR/Cas9)-mediated genome editing Phosphorodiamidate morpholino oligomers (PMOs) Golodirsen 2′-O-methyl RNA NS-065/NCNP-01 The human rhabdomyosarcoma (RD) cell line 

Notes

Acknowledgments

This work is supported by the Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, the Canadian Institutes of Health Research (CIHR), the Alberta Innovates: Health Solutions (AIHS), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education and Technology, and the Women and Children’s Health Research Institute (WCHRI).

References

  1. 1.
    Sussman M (2002) Duchenne muscular dystrophy. J Am Acad Orthop Surg 10(2):138–151CrossRefPubMedGoogle Scholar
  2. 2.
    Duchenne (1867) The pathology of paralysis with muscular degeneration (paralysie myosclerotique), or paralysis with apparent hypertrophy. Br Med J 2(363):541–542CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176.  https://doi.org/10.3390/jpm3030144 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakamura A, Fueki N, Shiba N et al (2016) Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet 61(7):663–667.  https://doi.org/10.1038/jhg.2016.28 CrossRefPubMedGoogle Scholar
  5. 5.
    Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45(4):498–506PubMedPubMedCentralGoogle Scholar
  6. 6.
    Nakamura A, Shiba N, Miyazaki D et al (2016) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet.  https://doi.org/10.1038/jhg.2016.152
  7. 7.
    Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218.  https://doi.org/10.1073/pnas.1613203114 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187.  https://doi.org/10.1093/nar/gku512 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Aoki Y, Nakamura A, Yokota T et al (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 3(11):1995–2005CrossRefGoogle Scholar
  10. 10.
    Yokota T, Duddy W, Echigoya Y et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12(9):1141–1152.  https://doi.org/10.1517/14712598.2012.693469 CrossRefPubMedGoogle Scholar
  11. 11.
    Wein N, Vulin A, Findlay AR et al (2017) Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscul Dis 4(3):199–207.  https://doi.org/10.3233/JND-170233 CrossRefPubMedGoogle Scholar
  12. 12.
    Yu X, Bao B, Echigoya Y et al (2015) Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 7(8):1314–1331PubMedPubMedCentralGoogle Scholar
  13. 13.
    Maruyama R, Echigoya Y, Caluseriu O et al (2017) Systemic delivery of morpholinos to skip multiple exons in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 1565:201–213.  https://doi.org/10.1007/978-1-4939-6817-6_17 CrossRefPubMedGoogle Scholar
  14. 14.
    Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299.  https://doi.org/10.1002/humu.20918 CrossRefPubMedGoogle Scholar
  15. 15.
    Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545.  https://doi.org/10.2147/DDDT.S97635 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med 7(4).  https://doi.org/10.3390/jpm7040013
  17. 17.
    Komaki H, Nagata T, Saito T, Masuda S, Takeshita E, Sasaki M, Tachimori H, Nakamura H, Aoki Y, Takeda S’i (2018) Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med 10(437):eaan0713Google Scholar
  18. 18.
    Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7(13):1631–1635.  https://doi.org/10.4155/fmc.15.116 CrossRefPubMedGoogle Scholar
  19. 19.
    Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther.  https://doi.org/10.1016/j.ymthe.2017.07.014
  20. 20.
    Mamchaoui K, Trollet C, Bigot A et al (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1:34.  https://doi.org/10.1186/2044-5040-1-34 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shimo T, Hosoki K, Nakatsuji Y et al (2018) A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. J Hum Genet 63:89–92CrossRefGoogle Scholar
  22. 22.
    Vouillot L, Thelie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5(3):407–415.  https://doi.org/10.1534/g3.114.015834 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical GeneticsUniversity of Alberta Faculty of Medicine and DentistryEdmontonCanada
  2. 2.The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research ChairEdmontonCanada

Personalised recommendations