Selection of Antibody Fragments Against Structured DNA by Phage Display

Part of the Methods in Molecular Biology book series (MIMB, volume 1827)


In addition to the canonical B-form structure, DNA can adopt alternative conformations including Z DNA, triplex DNA, as well as G4 and i-Motif quadruplex structures. Such structures have been shown to form in cells in a dynamic manner. Monoclonal antibodies against such structures represent key tools to study the biological functions of these structures. Here we provide protocols for the generation of antibody fragments against structured DNA using phage display selections.

Key words

Structured DNA Secondary structure G-quadruplex i-Motif Antibody fragment Phage display 


  1. 1.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738CrossRefPubMedGoogle Scholar
  2. 2.
    Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52(9):2863–2874. Scholar
  3. 3.
    Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang AH (1989) The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). J Biol Chem 264(14):7921–7935PubMedGoogle Scholar
  4. 4.
    Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95. Scholar
  5. 5.
    Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. Scholar
  6. 6.
    Phan AT, Gueron M, Leroy JL (2000) The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J Mol Biol 299(1):123–144. Scholar
  7. 7.
    Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. Scholar
  8. 8.
    Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916. Scholar
  9. 9.
    Bedrat A, Lacroix L, Mergny JL (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44(4):1746–1759. Scholar
  10. 10.
    Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32(6):271–278. Scholar
  11. 11.
    Zeraati M, Moye AL, Wong JW, Perera D, Cowley MJ, Christ DU, Bryan TM, Dinger ME (2017) Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression. Sci Rep 7(1):708. Scholar
  12. 12.
    Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275. Scholar
  13. 13.
    Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40(12):5867–5892. Scholar
  14. 14.
    Li Q, Xiang JF, Yang QF, Sun HX, Guan AJ, Tang YL (2013) G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res 41(Database issue):D1115–D1123. Scholar
  15. 15.
    Day HA, Pavlou P, Waller ZA (2014) i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22(16):4407–4418. Scholar
  16. 16.
    Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci U S A 98(15):8572–8577. Scholar
  17. 17.
    Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5(3):182–186. Scholar
  18. 18.
    Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) I-motif DNA structures are formed in the nuclei of human cells. Nature Chemistry 10(6):631–637Google Scholar
  19. 19.
    Kristensen P, Winter G (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 3(5):321–328CrossRefPubMedGoogle Scholar
  20. 20.
    Rouet R, Dudgeon K, Christie M, Langley D, Christ D (2015) Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem 290(19):11905–11917. Scholar
  21. 21.
    Rouet R, Lowe D, Dudgeon K, Roome B, Schofield P, Langley D, Andrews J, Whitfeld P, Jermutus L, Christ D (2012) Expression of high-affinity human antibody fragments in bacteria. Nat Protoc 7(2):364–373. Scholar
  22. 22.
    Lee CM, Iorno N, Sierro F, Christ D (2007) Selection of human antibody fragments by phage display. Nat Protoc 2(11):3001–3008CrossRefPubMedGoogle Scholar
  23. 23.
    de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9):989–994. Scholar
  24. 24.
    Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. Scholar
  25. 25.
    Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Garvan Institute of Medical ResearchSydneyAustralia
  2. 2.Faculty of MedicineSt. Vincent’s Clinical School, University of New South WalesSydneyAustralia

Personalised recommendations