Model Legumes: Functional Genomics Tools in Medicago truncatula

  • Luis A. CañasEmail author
  • José Pío Beltrán
Part of the Methods in Molecular Biology book series (MIMB, volume 1822)


Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.


Model legumes M. truncatula Functional genomics Targeted mutagenesis Reverse genetics Gene editing Legume development Secondary metabolites 



We gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness ( grant BIO2016-75485-R.


  1. 1.
    Azani N, Babineau M, Bailey CD et al (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. The legume phylogeny working group (LPWG). Taxon 66(1):44–47CrossRefGoogle Scholar
  2. 2.
    Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cannon SB (2013) The model legumes genomes. Methods Mol Biol 1069:1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sommer H, Beltran JP, Huijser P et al (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Benlloch R, Navarro C, Beltrán JP et al (2003) Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex Plant Reprod 15(5):231–241Google Scholar
  7. 7.
    Tucker SC (1989) Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). Am J Bot 76:714–729CrossRefGoogle Scholar
  8. 8.
    Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911926CrossRefGoogle Scholar
  9. 9.
    Ferrandiz C, Navarro C, Gomez MD et al (1999) Flower development in Pisum sativum: from the war of the whorls to the battle of the common primordia. Dev Genet 25:280–290PubMedCrossRefGoogle Scholar
  10. 10.
    Kamenetsky R, Akhmetova M (1994) Floral development of Eremurus-Altaicus (Liliaceae). Israel J Plant Sci 42:227–233CrossRefGoogle Scholar
  11. 11.
    Delaet J, Clinckemaillie D, Jansen S et al (1995) Floral ontogeny in the Plumbaginaceae. J Plant Res 108:289–304CrossRefGoogle Scholar
  12. 12.
    Evans RC, Dickinson TA (1996) North-American black-fruited hawthorns. 2. Floral development of 10-stamen morphotypes in Crataegus section Douglasii (Rosaceae, Maloideae). Am J Bot 83:961–978CrossRefGoogle Scholar
  13. 13.
    Kirchoff BK (1997) Inflorescence and flower development in the Hedychieae (Zingiberaceae) – Hedychium. Can J Bot 75:581–594CrossRefGoogle Scholar
  14. 14.
    Barker DG, Bianchi S, Blondon F et al (1990) Medicago truncatula, A model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49CrossRefGoogle Scholar
  15. 15.
    Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496CrossRefGoogle Scholar
  16. 16.
    Cook DR (1999) Medicago truncatula--a model in the making! Curr Opin Plant Biol 2:301–304PubMedCrossRefGoogle Scholar
  17. 17.
    Kijne J (1992) The rhizobium infection process. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. New York, Chapman and Hall, pp 349–398Google Scholar
  18. 18.
    Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbiosis: what are the shared features? Plant Cell 8:1899–1913PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tattersall AD, Turner L, Knox MR et al (2005) The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17:1046–1060PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hofer J, Turner L, Moreau C et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jing R, Knox MR, Lee JM et al (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gao Z, Eyers S, Thomas C et al (2004) Identification of markers tightly linked to sbm recessive genes for resistance to pea seedborne mosaic virus. Theor Appl Genet 109:488–494PubMedGoogle Scholar
  23. 23.
    Barratt DH, Barber L, Kruger NJ et al (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Boyer F-D, de Saint Germain A, Pillot J-P et al (2012) Strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159(4):1524–1544PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Benlloch R, Berbel A, Ali L et al (2015) Genetic control of inflorescence architecture in legumes. Front Plant Sci 6:543PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Berbel A, Navarro C, Ferrandiz C et al (2001) Analysis of PEAM4, the pea AP1 functional homolog, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451PubMedCrossRefGoogle Scholar
  28. 28.
    Berbel A, Navarro C, Ferrándiz C et al (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol 139:174–185PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Benlloch R, d’Erfurth I, Ferrandiz C et al (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Benlloch R, Berbel A, Serrano-Mislata A et al (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Benlloch R, Roque E, Ferràndiz C et al (2009) Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J 60(1):102–111PubMedCrossRefGoogle Scholar
  32. 32.
    Roque E, Serwatowska J, Rochina MC et al (2013) Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant J 73:663–675PubMedCrossRefGoogle Scholar
  33. 33.
    Serwatowska J, Roque E, Gómez-Mena C et al (2014) Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS One 9:e103770PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Roque E, Fares MA, Yenush L et al (2016) Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors. J Exp Bot 67(6):1805–1817PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vodkin L, Jones S, Gonzalez DO et al (2008) Genomics of soybean seed development. In: Stacey G (ed) Plant genetics and genomics: crops and models, Genetics and genomics of soybean, vol 2. Springer, NY, pp 163–184Google Scholar
  36. 36.
    Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291PubMedCrossRefGoogle Scholar
  37. 37.
    Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12(2):193–201PubMedCrossRefGoogle Scholar
  38. 38.
    Gepts P, Beavis WD, Brummer EC et al (2005) Legumes as a model plant family: genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546CrossRefPubMedGoogle Scholar
  40. 40.
    Xie DY, Sharma SB, Wright E et al (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907PubMedCrossRefGoogle Scholar
  41. 41.
    Farag MA, Huhman DV, Dixon RA et al (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in Phenylpropanoid and Isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146(2):387–402PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ha CM, Escamilla-Trevino L, Yarce JC et al (2016) An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J 86:363–375CrossRefPubMedGoogle Scholar
  43. 43.
    Mouradov A, Spangenberg G (2014) Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci 5:620PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yang DL, Li Q, Deng YW et al (2008) Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537PubMedCrossRefGoogle Scholar
  45. 45.
    Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lesins KA, Lesins I (1979) Genus Medicago (Leguminosae). A taxogenetic study. Dr W Yung bv Publishers, The Hague, p 228CrossRefGoogle Scholar
  47. 47.
    Iantcheva A, Vassileva V, Ugrinova M et al (2009) Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol Biotechnol Equip 23(4):1440–1443CrossRefGoogle Scholar
  48. 48.
    Panara F, Calderini O, Porceddu A (2012) Medicago truncatula functional genomics – an invaluable resource for studies on agriculture sustainability. In: Meroni G, Petrera F (eds) Biochemistry, genetics and molecular biology “functional genomics”. InTech.
  49. 49.
    Kang Y, Li M, Sinharoy S, Verdier J (2016) A snapshot of functional genetic studies in Medicago truncatula. Front Plant Sci 7:1175PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cook DR, VandenBosch K, de Bruijn FJ (1997) Model legumes get the nod. Plant Cell 9(3):275PubMedCentralCrossRefGoogle Scholar
  51. 51.
    Taylor S, Hofer J, Ian Murfet I (2001) Stamina pistilloida, the pea Ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell 13(1):31–46PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sagan M, Morandi D, Tarenghi E et al (1997) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis. Plant Sci 111:63–71CrossRefGoogle Scholar
  53. 53.
    Oldroyd G (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in nod factor signaling. Plant Physiol 131(3):1027–1032PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schnabel E, Journet EP, de Carvalho-Niebel F et al (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58(6):809–822CrossRefPubMedGoogle Scholar
  55. 55.
    Starker CG, Parra-Colmenares AL, Smith L et al (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140(2):671–680PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang H (2006) Fast neutron bombardment (FNB) mutagenesis for forward and reverse genetic studies in plants. Global Science Books, Isleworth, pp 629–639Google Scholar
  57. 57.
    Middleton PH, Jakab J, Penmetsa RV et al (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19(4):1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vernié T, Moreau S, de Billy F et al (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20(10):2696–2713PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rogers C, Wen J, Chen R et al (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151(3):1077–1086PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chen J, Yu J, Ge L et al (2010) Control of dissected leaf morphology by a Cys(2)his(2) zinc finger transcription factor in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 107(23):10754–10759PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Peng J, Yu J, Wang H et al (2011) Regulation of compound leaf development in Medicago truncatula by Fused Compound Leaf1, a class M KNOX gene. Plant Cell 23:3929–3943PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant-Microbe Interact 24(6):631–639PubMedCrossRefGoogle Scholar
  63. 63.
    Murray JD, Muni RRD, Torres-Jerez I et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65(2):244–252CrossRefPubMedGoogle Scholar
  64. 64.
    Mitra RM, Gleason CA, Edwards A et al (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Science 101(13):4701Google Scholar
  65. 65.
    Senthil-Kumar M, Mysore K (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665PubMedCrossRefGoogle Scholar
  66. 66.
    Grønlund M, Constantin G, Piednoir E et al (2008) Virus induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res 135:345–349PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Várallyay E, Lichner Z, Sáfrány J et al (2010) Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biol Hung 61(4):457–469PubMedCrossRefGoogle Scholar
  68. 68.
    Ané JM, Kiss GB, Riely BK et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303(5662):1364–1367CrossRefPubMedGoogle Scholar
  69. 69.
    Kalò P, Gleason C, Edwards A et al (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308(5729):1786–1789PubMedCrossRefGoogle Scholar
  70. 70.
    Ivashuta S, Liu J, Lohar DP et al (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17(11):2911–2921PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Limpens E, Mirabella R, Fedorova E et al (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci U S A 102(29):10375–10380PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Arrighi JF, Barre A, Amor BB et al (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142(1):265–279PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25(2):156–165PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wasson AP, Pellerone FI (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18(7):1617–1629PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gargantini PR, Gonzalez-Rizzo S, Chinchilla D et al (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48(6):843–856PubMedCrossRefGoogle Scholar
  76. 76.
    Colditz F, Niehaus K, Krajinski F (2007) Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta 226(1):57–71PubMedCrossRefGoogle Scholar
  77. 77.
    Kevei Z, Lougnon G, Mergaert P et al (2007) 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell 19(12):3974–3989PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Javot H, Penmetsa RV, Terzaghi N et al (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104(5):1720–1725PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Messinese E, Mun JH, Yeun LH et al (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20(8):912–921CrossRefPubMedGoogle Scholar
  80. 80.
    Rosnoblet C, Aubry C, Leprince O et al (2007) The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. Plant J 51(1):47–59PubMedCrossRefGoogle Scholar
  81. 81.
    Wan X, Hontelez J, Lillo A et al (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58(8):2033–2041PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang J, Subramanian S, Zhang Y et al (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144(2):741–751PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Floss DS, Hause B, Lange PR et al (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56(1):86–100PubMedCrossRefGoogle Scholar
  84. 84.
    Floss DS, Schliemann W, Schmidt JÃ et al (2008) RNA interferencemediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148(3):1267–1282PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chen SK, Kurdyukov S, Kereszt A et al (2009) The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta 230(4):827–840PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pii Y, Astegno A, Peroni E et al (2009) The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant-Microbe Interact 22(12):1577–1587PubMedCrossRefGoogle Scholar
  87. 87.
    de Lorenzo L, Merchan F, Laporte P et al (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21(2):668–680PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kuppusamy KT, Ivashuta S, Bucciarelli B et al (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151(3):1155–1166PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Peleg-Grossman S, Golani Y, Kaye Y et al (2009) NPR1 protein regulates pathogenic and symbiotic interactions between rhizobium and legumes and non-legumes. PLoS One 4(12):e8399PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Laporte P, Satiat-Jeunemaìtre B, Velasco I et al (2010) A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis. Plant J 62(1):24–38PubMedCrossRefGoogle Scholar
  91. 91.
    Lefebvre B, Timmers T, Mbengue M et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107(5):2343–2348PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pumplin N, Mondo SJ, Topp S et al (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61(3):482–494PubMedCrossRefGoogle Scholar
  93. 93.
    Zhou R, Jackson L, Shadle G et al (2010) Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci U S A 107(41):17803–17808PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Haney CH (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107(1):478–483PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kuhn H, Kùster RN (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185(3):716–733PubMedCrossRefGoogle Scholar
  96. 96.
    Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Gòbel C et al (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189(2):568–579PubMedCrossRefGoogle Scholar
  97. 97.
    Msehli SE, Lambert A, Baldacci-Cresp F et al (2011) Crucial role of (homo) glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol 192(2):496–506PubMedCrossRefGoogle Scholar
  98. 98.
    Gimeno-Gilles C, Gervais ML, Planchet E et al (2011) A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds. Plant Physiol Biochem 49(3):303–310PubMedCrossRefGoogle Scholar
  99. 99.
    Horchani F, Prèvot M, Boscari A et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155(2):1023–1036CrossRefPubMedGoogle Scholar
  100. 100.
    Pauly N, Ferrari C, Andrio E et al (2011) MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content. J Exp Bot 62(3):939–948PubMedCrossRefGoogle Scholar
  101. 101.
    Riely BK, He H, Venkateshwaran M et al (2011) Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J 65(2):230–243PubMedCrossRefGoogle Scholar
  102. 102.
    Naoumkina M, Dixon R (2011) Characterization of the mannan synthase promoter from guar (Cyamopsis tetragonoloba). Plant Cell Rep 30(6):997–1006PubMedCrossRefGoogle Scholar
  103. 103.
    Laurie ÌR, Diwadkar P, Jaudal M et al (2011) The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of Flowering time. Plant Physiol 156:2207–2224PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kiirika LM, Bergmann HF, Schikowsky C et al (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root Colonizations but negatively affects Rhizobial infection. Plant Physiol 159(1):501–516PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    de Zélicourt A, Diet A, Marion J et al (2012) Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J 70(2):220–230CrossRefPubMedGoogle Scholar
  106. 106.
    O’Malley R, Ecker J (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61(6):928–940PubMedCrossRefGoogle Scholar
  107. 107.
    Laffont C, Blanchet S, Lapierre C et al (2010) The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. Plant Physiol 153(4):1597–1607PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Carelli M, Biazzi E, Panara F et al (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23(8):3070–3081PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    d’Erfurth I, Cosson V, Eschstruth A et al (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34(1):95–106CrossRefPubMedGoogle Scholar
  110. 110.
    Tadege M, Ratet P, Mysore K (2005) Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10(5):229–235PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tadege M, Wen J, He J et al (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54(2):335–347CrossRefPubMedGoogle Scholar
  112. 112.
    Cheng X, Wen J, Tadege M et al (2011) Reverse genetics in Medicago truncatula using Tnt1 insertion mutants. Methods Mol Biol 678:179–190CrossRefPubMedGoogle Scholar
  113. 113.
    Cheng X, Wang M, Lee H-K et al (2014) An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytol 201:1065–1076PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Calderini O, Carelli M, Panara F et al (2011) Collection of mutants for functional genomics in the legume Medicago truncatula. Plant Genet Resour 9(2):174–176CrossRefGoogle Scholar
  115. 115.
    Rakocevic A, Mondy S, Tirichine L et al (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151(3):1250–1263PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Porceddu A, Panara F, Calderini O et al (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wang H, Chen J, Wen J et al (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146(4):1759–1772PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Peel GJ, Pang Y, Modolo LV (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59(1):136–149PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhao Q, Gallego-Giraldo L, Wang H et al (2010) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J 63(1):100–114PubMedGoogle Scholar
  120. 120.
    Vassileva V, Zehirov G, Ugrinova M (2010) Variable leaf epidermal leaf morphology in Tnt1 insertional mutants of the model legume Medicago truncatula. Biotechnol Biotechnol Equip 24(4):2060–2065CrossRefGoogle Scholar
  121. 121.
    Wang D, Griffitts J, Starker C et al (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327(5969):1126–1129PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhou C, Han L, Pislariu C et al (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol 157(3):1483–1496PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tadege M, Mysore K (2011) Tnt1 retrotransposon tagging of STF in Medicago truncatula reveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis. Mob Genet Elements 1(4):301–303PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Uppalapati SR, Ishiga Y, Doraiswamy V et al (2012) Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell 24(1):353–370PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Verdier J, Zhao J, Torres-Jerez I et al (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109(5):1766–1771PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ratet P (2006) Medicago truncatula handbook. Noble FoundationGoogle Scholar
  127. 127.
    Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42CrossRefGoogle Scholar
  128. 128.
    Michno J-M, Wang X, Liu J et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–252PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Howieson JG (2008) Nitrogen-fixing leguminous symbioses. SpringerGoogle Scholar
  130. 130.
    Dixon RA (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154(2):453–457PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Cañas LA, Fresquet S, Roque E et al (2017) Forage legumes with improved nutritional value: condensed tannins to avoid pasture bloat. In: Clemente A, Jiménez-López JC (eds) Legumes for global food security. NOVA Science Publishers, New York, pp 183–222Google Scholar
  132. 132.
    Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select TFs. Nat Biotechnol 26:1301–1308PubMedCrossRefGoogle Scholar
  133. 133.
    Fresquet-Corrales S, Roque E, Sarrión-Perdigones A et al (2017) Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS One 12(9):e0184839PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ho L, Chen LH, Wang J et al (2009) Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis 16(1):59–72PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang J, Ferruzzi MG, Ho L et al (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144–5150PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ollivier J, Töwe S, Bannert A et al (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78(1):3–16PubMedCrossRefGoogle Scholar
  137. 137.
    Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892PubMedCrossRefGoogle Scholar
  138. 138.
    Cermak T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217PubMedPubMedCentralGoogle Scholar
  139. 139.
    Cermak T, Curtin SJ (2017) Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat. Methods Mol Biol 1679:187–212PubMedCrossRefGoogle Scholar
  140. 140.
    Pandey MK, Roorkiwal M, Singh VK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP)ValenciaSpain

Personalised recommendations