Advertisement

The Multiple Faces of the Medicago-Sinorhizobium Symbiosis

  • Fathi Berrabah
  • El Hosseyn Ait Salem
  • Marie Garmier
  • Pascal Ratet
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1822)

Abstract

Medicago truncatula is able to perform a symbiotic association with Sinorhizobium spp. This interaction leads to the formation of a new root organ, the nodule, in which bacteria infect the host cells and fix atmospheric nitrogen for the plant benefit. Multiple and complex processes are essential for the success of this interaction from the recognition phase to nodule formation and functioning, and a wide range of plant host genes is required to orchestrate this phenomenon. Thanks to direct and reverse genetic as well as transcriptomic approaches, numerous genes involved in this symbiosis have been described and improve our understanding of this fantastic association. Herein we propose to update the recent molecular knowledge of how M. truncatula associates to its symbiotic partner Sinorhizobium spp.

Keywords

Medicago-Sinorhizobium Symbiosis Symbiotic genes Nitrogen fixation 

References

  1. 1.
    Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the Legume-Rhizobial symbiosis. Annu Rev Genet 45:119–144PubMedCrossRefGoogle Scholar
  2. 2.
    Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with Rhizobial infection in Legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  3. 3.
    Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium – legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194PubMedCrossRefGoogle Scholar
  4. 4.
    Udvardi M, Poole PS (2013) Transport and metabolism in Legume-Rhizobia symbioses. Annu Rev Plant Biol 64:781–805PubMedCrossRefGoogle Scholar
  5. 5.
    Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H et al (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535PubMedCrossRefGoogle Scholar
  6. 6.
    Vasse J, De Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14:458–467PubMedCrossRefGoogle Scholar
  8. 8.
    Timmers AC, Soupène E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant-Microbe Interact 13:1204–1213PubMedCrossRefGoogle Scholar
  9. 9.
    Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N et al (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liu C-W, Murray J (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants (Basel) 5:33CrossRefGoogle Scholar
  11. 11.
    Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fliegmann J, Bono JJ (2015) Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 32:455–464PubMedCrossRefGoogle Scholar
  13. 13.
    Dénarié J, Debellé F, Promé J-CC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  14. 14.
    Arrighi JF, Cartieaux F, Brown SC, Rodier-Goud M, Boursot M, Fardoux J et al (2012) Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis. Mol Plant-Microbe Interact 25:851–861PubMedCrossRefGoogle Scholar
  15. 15.
    Oldroyd GE (2013) Speak, friend, and enter : signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  16. 16.
    Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  17. 17.
    Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302:630–633PubMedCrossRefGoogle Scholar
  18. 18.
    Fliegmann J, Canova S, Lachaud C, Uhlenbroich S, Gasciolli V, Pichereaux C (2013) Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem Biol 8:1900–1906PubMedCrossRefGoogle Scholar
  19. 19.
    Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966PubMedCrossRefGoogle Scholar
  20. 20.
    Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signaling. Curr Opin Plant Biol 9(4):351–357PubMedCrossRefGoogle Scholar
  21. 21.
    Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  22. 22.
    Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G et al (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  24. 24.
    Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A et al (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20:912–921PubMedCrossRefGoogle Scholar
  25. 25.
    Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F et al (2011) Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interact 24:1345–1358PubMedCrossRefGoogle Scholar
  26. 26.
    Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S et al (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789PubMedCrossRefGoogle Scholar
  27. 27.
    Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308:1789–1791PubMedCrossRefGoogle Scholar
  28. 28.
    Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GED (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A et al (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cerri MR, Frances L, Laloum T, Auriac MC, Niebel A, Oldroyd GE et al (2012) Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol 160:2155–2172PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D et al (2010) The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22:3474–3488PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Miyahara A, Richens J, Starker C, Morieri G, Smith L, Long S et al (2010) Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. Mol Plant-Microbe Interact 23:1553–1562PubMedCrossRefGoogle Scholar
  33. 33.
    Kiss E, Oláh B, Kaló P, Morales M, Heckmann AB, Borbola A et al (2009) LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiol 151:1239–1249PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Laporte P, Lepage A, Fournier J, Catrice O, Moreau S, Jardinaud MF et al (2014) The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. J Exp Bot 65:481–494PubMedCrossRefGoogle Scholar
  35. 35.
    Soyano T, Kouchi H, Hirota A, Hayashi M (2013) NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9:e1003352PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Combier JP, De Billy F, Gamas P, Niebel A, Rivas S (2008) Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev 22:1549–1559PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Laloum T, Baudin M, Frances L, Lepage A, Billault-Penneteau B, Cerri MR et al (2014) Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis. Plant J 79:757–768PubMedCrossRefGoogle Scholar
  38. 38.
    Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P et al (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19:1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107:478–483PubMedCrossRefGoogle Scholar
  40. 40.
    Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW et al (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595PubMedCrossRefGoogle Scholar
  41. 41.
    Gavrin A, Kulikova O, Bisseling T, Fedorova EE (2017) Interface symbiotic membrane formation in root nodules of Medicago truncatula: the role of synaptotagmins MtSyt1, MtSyt2 and MtSyt3. Front Plant Sci 8:1–10CrossRefGoogle Scholar
  42. 42.
    Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E et al (2014) Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. Plant Cell 26:4188–4199PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) Nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R (2012) Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol 160:906–916PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Suzaki T, Yoro E, Kawaguchi M (2015) Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol 316:111–158PubMedCrossRefGoogle Scholar
  46. 46.
    Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121PubMedCrossRefGoogle Scholar
  47. 47.
    Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H et al (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156PubMedCrossRefGoogle Scholar
  48. 48.
    Crespi M, Frugier F (2009) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 2:er1CrossRefGoogle Scholar
  49. 49.
    van Zeijl A, Op den Camp RH, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJ et al (2015) Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol Plant 8:1213–1226PubMedCrossRefGoogle Scholar
  50. 50.
    Gonzalez-rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gamas P, Brault M, Jardinaud M, Frugier F (2017) Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci 22:792–802PubMedCrossRefGoogle Scholar
  52. 52.
    Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J et al (2012) Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24:3838–3852PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ng JL, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U (2015) Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27:2210–2226PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Vernie T, Billy D, Plet J, Combier J, Rogers C (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Di Giacomo E, Laffont C, Sciarra F, Iannelli MA, Frugier F, Frugis G (2017) KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol 213:822–837PubMedCrossRefGoogle Scholar
  56. 56.
    Azarakhsh M, Kirienko AN, Zhukov VA, Lebedeva MA, Dolgikh EA, Lutova LA (2015) KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development. J Exp Bot 66:7181–7195PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Guan D, Stacey N, Liu C, Wen J, Mysore KS, Torres-Jerez I et al (2013) Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula. Plant Physiol 162:107–115PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Godiard L, Lepage A, Moreau S, Laporte D, Verdenaud M, Timmers T, Gamas P (2011) MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytol 191:391–404PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140:671–680PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pislariu CI, Murray JD, Wen J, Cosson V, Muni RR, Wang M et al (2012) A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiol 159:1686–1699PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S et al (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K et al (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815PubMedCrossRefGoogle Scholar
  64. 64.
    Williams L, Fletcher JC (2005) Stem cell regulation in the Arabidopsis shoot apical meristem. Curr Opin Plant Biol 8:582–586PubMedCrossRefGoogle Scholar
  65. 65.
    Couzigou JM, Zhukov V, Mondy S, Abu el Heba G, Cosson V, Ellis TH et al (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24:4498–4510PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kereszt A, Mergaert P, Maróti G, Kondorosi É (2011) Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol 14:76–81PubMedCrossRefGoogle Scholar
  67. 67.
    Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O et al (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci U S A 103:5230–5235PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Alunni B, Gourion B (2016) Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytol 211:411–417PubMedCrossRefGoogle Scholar
  69. 69.
    Czernic P, Gully D, Cartieaux F, Moulin L, Guefrachi I, Patrel D et al (2015) Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiol 169:1254–1265PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P et al (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A et al (2011) Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 9:e1001169PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant-Microbe Interact 20:1138–1148PubMedCrossRefGoogle Scholar
  74. 74.
    Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M et al (2014) Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 15:712PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, Vandenbosch KA (2013) Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 8:e60355PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z et al (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126PubMedCrossRefGoogle Scholar
  77. 77.
    Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S et al (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Farkas A, Maróti G, Durgő H, Györgypál Z, Lima RM, Medzihradszky KF et al (2014) Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc Natl Acad Sci U S A 111:5183–5188PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kim M, Chen Y, Xi J, Waters C, Chen R, Wang D (2015) An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc Natl Acad Sci U S A 112:15238–15243PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Horváth B, Domonkos Á, Kereszt A, Szűcs A, Ábrahám E, Ayaydin F et al (2015) Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc Natl Acad Sci U S A 112:15232–15237PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wang Q, Yang S, Liu J, Terecskei K, Ábrahám E, Gombár A et al (2017) Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc Natl Acad Sci U S A 114:6854–6859PubMedPubMedCentralGoogle Scholar
  82. 82.
    Yang S, Wang Q, Fedorova E, Liu J, Qin Q, Zheng Q et al (2017) Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A 114:6848–6853PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR et al (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci U S A 114:E8118–E8127PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M et al (2013) Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol 197:1250–1261PubMedCrossRefGoogle Scholar
  85. 85.
    Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P et al (2014) A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol 203:1305–1314PubMedCrossRefGoogle Scholar
  86. 86.
    Wang C, Yu H, Luo L, Duan L, Cai L, He X et al (2016) NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytol 212:176–191PubMedCrossRefGoogle Scholar
  87. 87.
    Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J et al (2013) The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25:3584–3601PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Berrabah F, Ratet P, Gourion B (2015) Multiple steps control immunity during the intracellular accommodation of rhizobia. J Exp Bot 66:1977–1985PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Berrabah F, Bourcy M, Cayrel A, Eschstruth A, Mondy S, Ratet P, Gourion B (2014) Growth conditions determine the DNF2 requirement for symbiosis. PLoS One 9:e91866PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386PubMedPubMedCentralGoogle Scholar
  91. 91.
    Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  92. 92.
    Rubio LM, Ludden PW (2008) Biosynthesis of the cofactor of nitrogenase. Annu Rev Microbiol 62:93–111PubMedCrossRefGoogle Scholar
  93. 93.
    Hirsch M, Bang M, Ausubel FM (1983) Ultrastructural analysis of ineffective alfalfa nodules formed by Nif-Tn5 mutants of Rhizobium meliloti. J Bacteriol 155:367–380PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mortier V, Holsters M, Goormachtig S (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ 35:245–258PubMedCrossRefGoogle Scholar
  96. 96.
    Schnabel E, Journet EP, De Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822PubMedCrossRefGoogle Scholar
  97. 97.
    Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502PubMedCrossRefGoogle Scholar
  99. 99.
    Crook AD, Schnabel EL, Frugoli JA (2016) The systemic nodule number regulation kinase SUNN in Medicago truncatula interacts with MtCLV2 and MtCRN. Plant J 88:108–119PubMedCrossRefGoogle Scholar
  100. 100.
    Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA (2011) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157:328–340PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Huault E, Laffont C, Wen J, Mysore KS, Ratet P, Frugier F (2014) Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor- like kinase. PLoS Genet 10:e1004891PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409PubMedCrossRefGoogle Scholar
  103. 103.
    Mohd-Radzman NA, Laffont C, Ivanovici A, Patel N, Reid D, Stougaard J et al (2016) Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol 171:2536–2548PubMedPubMedCentralGoogle Scholar
  104. 104.
    Pérez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W et al (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol 152:1574–1584PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R et al (2014) Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytol 202:849–863PubMedCrossRefGoogle Scholar
  106. 106.
    Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036PubMedCrossRefGoogle Scholar
  107. 107.
    Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196:548–560PubMedCrossRefGoogle Scholar
  108. 108.
    Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants – where do we stand? Physiol Plant 138:372–383PubMedCrossRefGoogle Scholar
  109. 109.
    Cerri MR, Frances L, Kelner A, Fournier J, Middleton PH, Auriac MC et al (2016) The symbiosis-related ERN transcription factors act in concert to coordinate rhizobial host root infection. Plant Physiol 171:1037–1054PubMedPubMedCentralGoogle Scholar
  110. 110.
    Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S et al (2016) MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of Medicago truncatula susceptibility toward a root pathogen. Front Plant Sci 7:1837PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD / NIP transporter. Plant Signal Behav 5:1365–1369PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107:2343–2348PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252PubMedCrossRefGoogle Scholar
  114. 114.
    Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J et al (2016) A Medicago truncatula cystathionine-β-synthase-like domain-containing protein is required for rhizobial infection and symbiotic nitrogen fixation. Plant Physiol 170:2204–2217PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Arrighi J-F, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C (2008) The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A 105:9817–9822PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Op den Camp RH, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R (2011) A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-a response regulators. Plant Physiol 157:2013–2022CrossRefGoogle Scholar
  117. 117.
    Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M et al (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol 202:582–593PubMedCrossRefGoogle Scholar
  118. 118.
    Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214PubMedCrossRefGoogle Scholar
  119. 119.
    Hopkins J, Pierre O, Kazmierczak T, Gruber V, Frugier F, Clement M (2014) Mt ZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. Plant Cell Environ 37:658–669PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fathi Berrabah
    • 1
  • El Hosseyn Ait Salem
    • 2
    • 3
  • Marie Garmier
    • 2
    • 3
  • Pascal Ratet
    • 2
    • 3
  1. 1.Departement of Biology, Faculty of Nature and Life ScienceUniversity of Ziane AchourDjelfaAlgeria
  2. 2.Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université EvryUniversité Paris-SaclayOrsayFrance
  3. 3.Institute of Plant Sciences Paris-Saclay IPS2, Paris DiderotSorbonne Paris-CitéOrsayFrance

Personalised recommendations