Skip to main content

The Multiple Faces of the Medicago-Sinorhizobium Symbiosis

  • Protocol
  • First Online:
Functional Genomics in Medicago truncatula

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1822))

Abstract

Medicago truncatula is able to perform a symbiotic association with Sinorhizobium spp. This interaction leads to the formation of a new root organ, the nodule, in which bacteria infect the host cells and fix atmospheric nitrogen for the plant benefit. Multiple and complex processes are essential for the success of this interaction from the recognition phase to nodule formation and functioning, and a wide range of plant host genes is required to orchestrate this phenomenon. Thanks to direct and reverse genetic as well as transcriptomic approaches, numerous genes involved in this symbiosis have been described and improve our understanding of this fantastic association. Herein we propose to update the recent molecular knowledge of how M. truncatula associates to its symbiotic partner Sinorhizobium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the Legume-Rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  PubMed  CAS  Google Scholar 

  2. Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with Rhizobial infection in Legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  3. Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium – legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Article  PubMed  CAS  Google Scholar 

  4. Udvardi M, Poole PS (2013) Transport and metabolism in Legume-Rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  PubMed  CAS  Google Scholar 

  5. Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H et al (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  PubMed  CAS  Google Scholar 

  6. Vasse J, De Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14:458–467

    Article  PubMed  CAS  Google Scholar 

  8. Timmers AC, Soupène E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant-Microbe Interact 13:1204–1213

    Article  PubMed  CAS  Google Scholar 

  9. Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N et al (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu C-W, Murray J (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants (Basel) 5:33

    Article  CAS  Google Scholar 

  11. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fliegmann J, Bono JJ (2015) Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 32:455–464

    Article  PubMed  CAS  Google Scholar 

  13. Dénarié J, Debellé F, Promé J-CC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  14. Arrighi JF, Cartieaux F, Brown SC, Rodier-Goud M, Boursot M, Fardoux J et al (2012) Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis. Mol Plant-Microbe Interact 25:851–861

    Article  PubMed  CAS  Google Scholar 

  15. Oldroyd GE (2013) Speak, friend, and enter : signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  PubMed  CAS  Google Scholar 

  16. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  PubMed  CAS  Google Scholar 

  17. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302:630–633

    Article  PubMed  CAS  Google Scholar 

  18. Fliegmann J, Canova S, Lachaud C, Uhlenbroich S, Gasciolli V, Pichereaux C (2013) Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem Biol 8:1900–1906

    Article  PubMed  CAS  Google Scholar 

  19. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  20. Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signaling. Curr Opin Plant Biol 9(4):351–357

    Article  PubMed  CAS  Google Scholar 

  21. Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  CAS  Google Scholar 

  22. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G et al (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  PubMed  CAS  Google Scholar 

  24. Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A et al (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20:912–921

    Article  PubMed  CAS  Google Scholar 

  25. Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F et al (2011) Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interact 24:1345–1358

    Article  PubMed  Google Scholar 

  26. Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S et al (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    Article  PubMed  CAS  Google Scholar 

  27. Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308:1789–1791

    Article  PubMed  CAS  Google Scholar 

  28. Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GED (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A et al (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cerri MR, Frances L, Laloum T, Auriac MC, Niebel A, Oldroyd GE et al (2012) Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol 160:2155–2172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D et al (2010) The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22:3474–3488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Miyahara A, Richens J, Starker C, Morieri G, Smith L, Long S et al (2010) Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. Mol Plant-Microbe Interact 23:1553–1562

    Article  PubMed  CAS  Google Scholar 

  33. Kiss E, Oláh B, Kaló P, Morales M, Heckmann AB, Borbola A et al (2009) LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiol 151:1239–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Laporte P, Lepage A, Fournier J, Catrice O, Moreau S, Jardinaud MF et al (2014) The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. J Exp Bot 65:481–494

    Article  PubMed  CAS  Google Scholar 

  35. Soyano T, Kouchi H, Hirota A, Hayashi M (2013) NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9:e1003352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Combier JP, De Billy F, Gamas P, Niebel A, Rivas S (2008) Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev 22:1549–1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Laloum T, Baudin M, Frances L, Lepage A, Billault-Penneteau B, Cerri MR et al (2014) Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis. Plant J 79:757–768

    Article  PubMed  CAS  Google Scholar 

  38. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P et al (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19:1221–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107:478–483

    Article  PubMed  Google Scholar 

  40. Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW et al (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  PubMed  CAS  Google Scholar 

  41. Gavrin A, Kulikova O, Bisseling T, Fedorova EE (2017) Interface symbiotic membrane formation in root nodules of Medicago truncatula: the role of synaptotagmins MtSyt1, MtSyt2 and MtSyt3. Front Plant Sci 8:1–10

    Article  Google Scholar 

  42. Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E et al (2014) Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. Plant Cell 26:4188–4199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) Nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R (2012) Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol 160:906–916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Suzaki T, Yoro E, Kawaguchi M (2015) Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol 316:111–158

    Article  PubMed  Google Scholar 

  46. Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121

    Article  PubMed  CAS  Google Scholar 

  47. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H et al (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    Article  PubMed  CAS  Google Scholar 

  48. Crespi M, Frugier F (2009) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 2:er1

    Article  Google Scholar 

  49. van Zeijl A, Op den Camp RH, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJ et al (2015) Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol Plant 8:1213–1226

    Article  PubMed  CAS  Google Scholar 

  50. Gonzalez-rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gamas P, Brault M, Jardinaud M, Frugier F (2017) Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci 22:792–802

    Article  PubMed  CAS  Google Scholar 

  52. Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J et al (2012) Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24:3838–3852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ng JL, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U (2015) Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27:2210–2226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vernie T, Billy D, Plet J, Combier J, Rogers C (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Di Giacomo E, Laffont C, Sciarra F, Iannelli MA, Frugier F, Frugis G (2017) KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol 213:822–837

    Article  PubMed  CAS  Google Scholar 

  56. Azarakhsh M, Kirienko AN, Zhukov VA, Lebedeva MA, Dolgikh EA, Lutova LA (2015) KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development. J Exp Bot 66:7181–7195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Guan D, Stacey N, Liu C, Wen J, Mysore KS, Torres-Jerez I et al (2013) Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula. Plant Physiol 162:107–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Godiard L, Lepage A, Moreau S, Laporte D, Verdenaud M, Timmers T, Gamas P (2011) MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytol 191:391–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pislariu CI, Murray JD, Wen J, Cosson V, Muni RR, Wang M et al (2012) A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiol 159:1686–1699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S et al (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K et al (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  64. Williams L, Fletcher JC (2005) Stem cell regulation in the Arabidopsis shoot apical meristem. Curr Opin Plant Biol 8:582–586

    Article  PubMed  CAS  Google Scholar 

  65. Couzigou JM, Zhukov V, Mondy S, Abu el Heba G, Cosson V, Ellis TH et al (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24:4498–4510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kereszt A, Mergaert P, Maróti G, Kondorosi É (2011) Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol 14:76–81

    Article  PubMed  CAS  Google Scholar 

  67. Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O et al (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci U S A 103:5230–5235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Alunni B, Gourion B (2016) Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytol 211:411–417

    Article  PubMed  CAS  Google Scholar 

  69. Czernic P, Gully D, Cartieaux F, Moulin L, Guefrachi I, Patrel D et al (2015) Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiol 169:1254–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P et al (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A et al (2011) Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 9:e1001169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant-Microbe Interact 20:1138–1148

    Article  PubMed  CAS  Google Scholar 

  74. Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M et al (2014) Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 15:712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, Vandenbosch KA (2013) Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 8:e60355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z et al (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  CAS  Google Scholar 

  77. Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S et al (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Farkas A, Maróti G, Durgő H, Györgypál Z, Lima RM, Medzihradszky KF et al (2014) Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc Natl Acad Sci U S A 111:5183–5188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim M, Chen Y, Xi J, Waters C, Chen R, Wang D (2015) An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc Natl Acad Sci U S A 112:15238–15243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Horváth B, Domonkos Á, Kereszt A, Szűcs A, Ábrahám E, Ayaydin F et al (2015) Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc Natl Acad Sci U S A 112:15232–15237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang Q, Yang S, Liu J, Terecskei K, Ábrahám E, Gombár A et al (2017) Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc Natl Acad Sci U S A 114:6854–6859

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Yang S, Wang Q, Fedorova E, Liu J, Qin Q, Zheng Q et al (2017) Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A 114:6848–6853

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR et al (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci U S A 114:E8118–E8127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M et al (2013) Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol 197:1250–1261

    Article  PubMed  CAS  Google Scholar 

  85. Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P et al (2014) A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol 203:1305–1314

    Article  PubMed  CAS  Google Scholar 

  86. Wang C, Yu H, Luo L, Duan L, Cai L, He X et al (2016) NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytol 212:176–191

    Article  PubMed  CAS  Google Scholar 

  87. Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J et al (2013) The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25:3584–3601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Berrabah F, Ratet P, Gourion B (2015) Multiple steps control immunity during the intracellular accommodation of rhizobia. J Exp Bot 66:1977–1985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Berrabah F, Bourcy M, Cayrel A, Eschstruth A, Mondy S, Ratet P, Gourion B (2014) Growth conditions determine the DNF2 requirement for symbiosis. PLoS One 9:e91866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  PubMed  CAS  Google Scholar 

  92. Rubio LM, Ludden PW (2008) Biosynthesis of the cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  PubMed  CAS  Google Scholar 

  93. Hirsch M, Bang M, Ausubel FM (1983) Ultrastructural analysis of ineffective alfalfa nodules formed by Nif-Tn5 mutants of Rhizobium meliloti. J Bacteriol 155:367–380

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mortier V, Holsters M, Goormachtig S (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ 35:245–258

    Article  PubMed  CAS  Google Scholar 

  96. Schnabel E, Journet EP, De Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  CAS  Google Scholar 

  97. Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502

    Article  PubMed  CAS  Google Scholar 

  99. Crook AD, Schnabel EL, Frugoli JA (2016) The systemic nodule number regulation kinase SUNN in Medicago truncatula interacts with MtCLV2 and MtCRN. Plant J 88:108–119

    Article  PubMed  CAS  Google Scholar 

  100. Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA (2011) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157:328–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Huault E, Laffont C, Wen J, Mysore KS, Ratet P, Frugier F (2014) Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor- like kinase. PLoS Genet 10:e1004891

    Article  PubMed  PubMed Central  Google Scholar 

  102. Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409

    Article  PubMed  CAS  Google Scholar 

  103. Mohd-Radzman NA, Laffont C, Ivanovici A, Patel N, Reid D, Stougaard J et al (2016) Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol 171:2536–2548

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Pérez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W et al (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol 152:1574–1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R et al (2014) Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytol 202:849–863

    Article  PubMed  CAS  Google Scholar 

  106. Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  PubMed  CAS  Google Scholar 

  107. Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196:548–560

    Article  PubMed  CAS  Google Scholar 

  108. Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants – where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  109. Cerri MR, Frances L, Kelner A, Fournier J, Middleton PH, Auriac MC et al (2016) The symbiosis-related ERN transcription factors act in concert to coordinate rhizobial host root infection. Plant Physiol 171:1037–1054

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S et al (2016) MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of Medicago truncatula susceptibility toward a root pathogen. Front Plant Sci 7:1837

    Article  PubMed  PubMed Central  Google Scholar 

  111. Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD / NIP transporter. Plant Signal Behav 5:1365–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107:2343–2348

    Article  PubMed  PubMed Central  Google Scholar 

  113. Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252

    Article  PubMed  CAS  Google Scholar 

  114. Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J et al (2016) A Medicago truncatula cystathionine-β-synthase-like domain-containing protein is required for rhizobial infection and symbiotic nitrogen fixation. Plant Physiol 170:2204–2217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Arrighi J-F, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C (2008) The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A 105:9817–9822

    Article  PubMed  PubMed Central  Google Scholar 

  116. Op den Camp RH, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R (2011) A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-a response regulators. Plant Physiol 157:2013–2022

    Article  CAS  Google Scholar 

  117. Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M et al (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol 202:582–593

    Article  PubMed  CAS  Google Scholar 

  118. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  119. Hopkins J, Pierre O, Kazmierczak T, Gruber V, Frugier F, Clement M (2014) Mt ZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. Plant Cell Environ 37:658–669

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Ratet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Berrabah, F., Salem, E.H.A., Garmier, M., Ratet, P. (2018). The Multiple Faces of the Medicago-Sinorhizobium Symbiosis. In: Cañas, L., Beltrán, J. (eds) Functional Genomics in Medicago truncatula. Methods in Molecular Biology, vol 1822. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8633-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8633-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8632-3

  • Online ISBN: 978-1-4939-8633-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics