Advertisement

Enalos+ KNIME Nodes: New Cheminformatics Tools for Drug Discovery

  • Dimitra-Danai Varsou
  • Spyridon Nikolakopoulos
  • Andreas Tsoumanis
  • Georgia Melagraki
  • Antreas Afantitis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)

Abstract

In this chapter we present and discuss Enalos+ nodes designed and developed by NovaMechanics Ltd. for the open-source KNIME platform, as a useful aid when dealing with cheminformatics and nanoinformatics problems or medicinal applications. Enalos+ nodes facilitate tasks performed in molecular modeling and allow access, data mining, and manipulation for multiple chemical databases through the KNIME interface. Enalos+ nodes automate common procedures that greatly facilitate the rapid workflow prototyping within KNIME. Μethods and techniques that are included in Enalos+ nodes are presented in order to offer a deeper understanding of the theoretical background of the incorporated functionalities. An emphasis is given to demonstrate the usefulness of Enalos+ nodes in different cheminformatics applications by presenting four indicative case studies. Specifically, we present case studies that underline the value and the effectiveness of the nodes for molecular descriptors calculation and QSAR predictive model development. In addition, case studies are also presented demonstrating the benefits of the use of Enalos+ nodes for database exploitation within a drug discovery project.

Key words

Nanoinformatics Computational nanotoxicology QSAR Cheminformatics Virtual screening 

References

  1. 1.
    Todeschini R, Consonni V (eds) (2010) Molecular descriptors for chemoinformatics, vol 2. Wiley, Weinheim, pp 1–252Google Scholar
  2. 2.
    Leonis G et al (2016) Open source chemoinformatics software including KNIME analytics. In: Leszczynski J (ed) Handbook of computational chemistry. Springer, New York, pp 1–48Google Scholar
  3. 3.
    Willett P (2002) Chemistry plans a structural overhaul the rising tide of data being generated by high-throughput. Nature 419:4–7. https://doi.org/10.1038/nj6903-04a CrossRefGoogle Scholar
  4. 4.
    Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Revised Ed. Springer, New York; 260 pCrossRefGoogle Scholar
  5. 5.
    Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344. https://doi.org/10.1021/ci800038f CrossRefPubMedGoogle Scholar
  6. 6.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29(6–7):476–488. https://doi.org/10.1002/minf.201000061 CrossRefGoogle Scholar
  7. 7.
    Melagraki G, Afantitis A (2016) Editorial: towards open access for cheminformatics. Comb Chem High Throughput Screen 19(4):260–261. https://doi.org/10.2174/138620731904160413183904 CrossRefPubMedGoogle Scholar
  8. 8.
  9. 9.
    Fillbrunn A, Dietz C, Pfeuffer J et al (2017) KNIME for reproducible cross-domain analysis of life science data. J Biotechnol 261:149–156. https://doi.org/10.1016/j.jbiotec.2017.07.028 CrossRefPubMedGoogle Scholar
  10. 10.
    Melagraki G, Afantitis A (2013) Enalos KNIME nodes: exploring corrosion inhibition of steel in acidic medium. Chemom Intell Lab Syst 123:9–14. https://doi.org/10.1016/j.chemolab.2013.02.003 CrossRefGoogle Scholar
  11. 11.
    Melagraki G, Afantitis A (2015) A risk assessment tool for the virtual screening of metal oxide nanoparticles through enalos insiliconano platform. Curr Top Med Chem 15(18):1827–1836. https://doi.org/10.2174/1568026615666150506144536 CrossRefPubMedGoogle Scholar
  12. 12.
    Ojha PK, Roy K (2016) Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2017.03.043 CrossRefPubMedGoogle Scholar
  13. 13.
    Melagraki G, Ntougkos E, Rinotas V et al (2017) Cheminformatics-aided discovery of small-molecule protein-protein interaction (PPI) dual inhibitors of tumor necrosis factor (TNF) and receptor activator of NF-κB ligand (RANKL). PLoS Comput Biol 13(4):e1005372. https://doi.org/10.1371/journal.pcbi.1005372 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta 468(1):91–103. https://doi.org/10.1016/S0003-2670(02)00651-7 CrossRefGoogle Scholar
  15. 15.
    Hudson BD, Hyde RM, Rahr E et al (1996) Parameter based methods for compound selection from chemical databases. Quant Struct Relationships 15(4):285–289. https://doi.org/10.1002/qsar.19960150402 CrossRefGoogle Scholar
  16. 16.
    Melagraki G, Afantitis A, Makridima K et al (2006) Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model 12(3):297–305. https://doi.org/10.1007/s00894-005-0032-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Kennard RW, Stone LA (1969) Computer aided design of experiments. Am Soc Qual 3(2):167–190. https://doi.org/10.2307/1266770 CrossRefGoogle Scholar
  18. 18.
    Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77. https://doi.org/10.1002/qsar.200390007 CrossRefGoogle Scholar
  19. 19.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5(4):231–243. https://doi.org/10.1023/A:1021372108686 CrossRefGoogle Scholar
  21. 21.
    Afantitis A, Melagraki G, Sarimveis H et al (2009) A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44(2):877–884. https://doi.org/10.1016/j.ejmech.2008.05.028 CrossRefPubMedGoogle Scholar
  22. 22.
    Melagraki G, Afantitis A (2014) Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv 4(92):50713–50725. https://doi.org/10.1039/C4RA07756C CrossRefGoogle Scholar
  23. 23.
    Schrey AK, Nickel-Seeber J, Drwal MN et al (2017) Computational prediction of immune cell cytotoxicity. Food Chem Toxicol 107:150–166. https://doi.org/10.1016/j.fct.2017.05.041 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen B, Wild DJ (2010) PubChem BioAssays as a data source for predictive models. J Mol Graph Model 28(5):420–426. https://doi.org/10.1016/j.jmgm.2009.10.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951 CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng T, Pan Y, Hao M et al (2014) PubChem applications in drug discovery: a bibliometric analysis. Drug Discov Today 19(11):1751–1756. https://doi.org/10.1016/j.drudis.2014.08.008 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dimitra-Danai Varsou
    • 1
  • Spyridon Nikolakopoulos
    • 1
  • Andreas Tsoumanis
    • 1
  • Georgia Melagraki
    • 1
  • Antreas Afantitis
    • 1
  1. 1.NovaMechanics Ltd.NicosiaCyprus

Personalised recommendations