Advertisement

Rational Drug Design Using Integrative Structural Biology

  • Magda S. Chegkazi
  • Michael Mamais
  • Anastasia I. Sotiropoulou
  • Evangelia D. Chrysina
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)

Abstract

Modern drug discovery and design approaches rely heavily on high-throughput methods and state-of-the-art infrastructures with robotic facilities and sophisticated platforms. However, the anticipated research output that would eventually lead to new drugs with minimal or no side effects to the market has not been achieved. Despite the vast amount of information generated, very little is converted to knowledge and even less is capitalized for cross-discipline research actions. Therefore, the need for re-launching rational approaches has become apparent. Here we present an overview of the new trends in rational drug design using integrative structural biology with emphasis on X-ray protein crystallography and small molecules as ligands. With the aim to increase researchers’ awareness on the available possibilities to perform front line research, we also underline the benefits and enhanced prospects offered to the scientific community, through access to research infrastructures.

Key words

Structure-based drug design Structural biology Bioinformatics X-ray protein crystallography 

Abbreviations

3D

Three dimensional

DLS

Dynamic light scattering

DMSO

Dimethyl sulfoxide

EM

Electron microscopy

HPLC

High-performance liquid chromatography

HR-MS

High-resolution mass spectrometry

MALLS

Multi-angle laser light scattering

NMR

Nuclear magnetic resonance

RI

Research infrastructure

SAXS

Small-angle X-ray scattering

SEC

Size exclusion chromatography

SRS

Synchrotron radiation source

References

  1. 1.
    Berman HM (2008) The protein data bank: a historical perspective. Acta Crystallogr A 64(Pt 1):88–95. https://doi.org/10.1107/S0108767307035623 CrossRefPubMedGoogle Scholar
  2. 2.
    Scannell JW, Blanckley A, Boldon H et al (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11(3):191–200. https://doi.org/10.1038/nrd3681 CrossRefPubMedGoogle Scholar
  3. 3.
    Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS One 11(2):e0147215. https://doi.org/10.1371/journal.pone.0147215 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Manglik A, Lin H, Aryal DK et al (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537(7619):185–190. https://doi.org/10.1038/nature19112 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wacker D, Wang S, McCorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168(3):377–389.e12. https://doi.org/10.1016/j.cell.2016.12.033 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10(12):807–813. https://doi.org/10.1038/nrmicro2893 CrossRefPubMedGoogle Scholar
  7. 7.
    Gourlay L, Peri C, Bolognesi M et al (2017) Structure and computation in immunoreagent design: from diagnostics to vaccines. Trends Biotechnol 35(12):1208–1220. https://doi.org/10.1016/j.tibtech.2017.06.018 CrossRefPubMedGoogle Scholar
  8. 8.
    Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:1–13. https://doi.org/10.3389/fbioe.2017.00016 CrossRefGoogle Scholar
  9. 9.
    Jensen MBV, Horsfall LE, Wardrope C et al (2016) Characterisation of a new family of carboxyl esterases with an OsmC domain. PLoS One 11(11):e0166128. https://doi.org/10.1371/journal.pone.0166128 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Scholz J, Besir H, Strasser C et al (2013) A new method to customize protein expression vectors for fast, efficient and background free parallel cloning. BMC Biotechnol 13(1):12. https://doi.org/10.1186/1472-6750-13-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Owens RJ (ed) (2015) Structural proteomics: high-throughput methods. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4939-2230-7 CrossRefGoogle Scholar
  12. 12.
    Singh A, Upadhyay V, Upadhyay AK et al (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories 14:2–10. https://doi.org/10.1186/s12934-015-0222-8 CrossRefGoogle Scholar
  13. 13.
    Malissard M, Berger EG (2001) Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. Eur J Biochem 268(15):4352–4358. https://doi.org/10.1046/j.1432-1327.2001.02357.x CrossRefPubMedGoogle Scholar
  14. 14.
    Janson J-C (ed) (2011) Protein purification: principles, high resolution methods and applications. Wiley, Hoboken. https://doi.org/10.1002/9780470939932 CrossRefGoogle Scholar
  15. 15.
    Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook. Humana Press, Totowa, NJGoogle Scholar
  16. 16.
    Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322Google Scholar
  17. 17.
    Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. https://doi.org/10.1038/emboj.2013.79 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kimple ME, Brill AL, Pasker RL (2015) Overview of affinity tags for protein purification. Curr Protoc Protein Sci Unit-9.9:1–26. https://doi.org/10.1002/0471140864.ps0909s73 CrossRefGoogle Scholar
  19. 19.
    Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov V, Caravella J (eds) Therapeutic proteins. Methods in molecular biology (methods and protocols), vol 899. Humana Press, Totowa, NJGoogle Scholar
  20. 20.
    Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. https://doi.org/10.1038/nprot.2006.202 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Macchi P (2011) Cryo-crystallography: diffraction at low temperature and more. In: Rissanen K (ed) Advanced X-ray crystallography. Topics in current chemistry, vol 315. Springer, Berlin, HeidelbergGoogle Scholar
  22. 22.
    Krojer T, Pike ACW, Von Delft F (2013) Squeezing the most from every crystal: the fine details of data collection. Acta Crystallogr Sect D Biol Crystallogr 69:1303–1313. https://doi.org/10.1107/S0907444913013280 CrossRefGoogle Scholar
  23. 23.
    Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66(Pt2):125–132. https://doi.org/10.1107/S0907444909047337 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leslie AGW, Powell HR (2007) Processing diffraction data with mosflm. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. NATO Science Series, vol 245. Springer, DordrechtGoogle Scholar
  25. 25.
    Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr 67(Pt.4):235–242. https://doi.org/10.1107/S0907444910045749 CrossRefGoogle Scholar
  26. 26.
    Navaza J, Saludjian P (1997) AMoRe: an automated molecular replacement program package. Methods Enzymol 276:581–594. https://doi.org/10.1016/S0076-6879(97)76079-8 CrossRefPubMedGoogle Scholar
  27. 27.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt.4):658–674. https://doi.org/10.1107/S0021889807021206 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025. https://doi.org/10.1107/S0021889897006766 CrossRefGoogle Scholar
  29. 29.
    Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.2):213–221. https://doi.org/10.1107/S0907444909052925 CrossRefGoogle Scholar
  30. 30.
    Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of coot. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.4):486–501. https://doi.org/10.1107/S0907444910007493 CrossRefGoogle Scholar
  31. 31.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt.3):240–255. https://doi.org/10.1107/S0907444996012255 CrossRefPubMedGoogle Scholar
  32. 32.
    Murshudov GN, Skubák P, Lebedev AA et al (2011) REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr 67:355–367. https://doi.org/10.1107/S0907444911001314 CrossRefGoogle Scholar
  33. 33.
    Chen VB, Arendall WB, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.1):12–21. https://doi.org/10.1107/S0907444909042073 CrossRefGoogle Scholar
  34. 34.
    Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Aust J Chem 4(1):17. https://doi.org/10.1186/1758-2946-4-17 CrossRefGoogle Scholar
  35. 35.
    Schüttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 60(Pt.8):1355–1363. https://doi.org/10.1107/S0907444904011679 CrossRefGoogle Scholar
  36. 36.
    Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u CrossRefPubMedGoogle Scholar
  37. 37.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  38. 38.
    Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53(14):5061–5084. https://doi.org/10.1021/jm100112j CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(11):1210–1250. https://doi.org/10.1002/anie.200390319 CrossRefGoogle Scholar
  40. 40.
    Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168. https://doi.org/10.1186/1471-2105-10-168 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. https://doi.org/10.1093/nar/gkl282 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stank A, Kokh DB, Horn M et al (2017) TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res 45(W1):W325–W330. https://doi.org/10.1093/nar/gkx277 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Porter CT (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32:129D–133D. https://doi.org/10.1093/nar/gkh028 CrossRefGoogle Scholar
  44. 44.
    Torrance JW, Bartlett GJ, Porter CT et al (2005) Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 347(3):565–581. https://doi.org/10.1016/j.jmb.2005.01.044 CrossRefPubMedGoogle Scholar
  45. 45.
    Van Linden OPJ, Kooistra AJ, Leurs R et al (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57(2):249–277. https://doi.org/10.1021/jm400378w CrossRefPubMedGoogle Scholar
  46. 46.
    Kooistra AJ, Kanev GK, Van Linden OPJ et al (2016) KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res 44:D365–D371. https://doi.org/10.1093/nar/gkv1082 CrossRefPubMedGoogle Scholar
  47. 47.
    Hendlich M, Bergner A, Günther J et al (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J Mol Biol 326(2):607–620. https://doi.org/10.1016/S0022-2836(02)01408-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Verma R, Mitchell-Koch K (2017) In silico studies of small molecule interactions with enzymes reveal aspects of catalytic function. Catalysts 7(7):212. https://doi.org/10.3390/catal7070212 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lu Y, Wang R, Yang CY et al (2007) Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47(2):668–675. https://doi.org/10.1021/ci6003527 CrossRefPubMedGoogle Scholar
  50. 50.
    Spyrakis F, Ahmed MH, Bayden AS et al (2017) The roles of water in the protein matrix: a largely untapped resource for drug discovery. J Med Chem 60(16):6781–6828. https://doi.org/10.1021/acs.jmedchem.7b00057 CrossRefGoogle Scholar
  51. 51.
    Mavrokefalos N, Myrianthopoulos V, Chajistamatiou AS et al (2015) Discovery of the glycogen phosphorylase-modulating activity of a resveratrol glucoside by using a virtual screening protocol optimized for solvation effects. Planta Med 81(6):507–516. https://doi.org/10.1055/s-0035-1545910 CrossRefPubMedGoogle Scholar
  52. 52.
    Tan KP, Nguyen TB, Patel S et al (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41:W314–W321. https://doi.org/10.1093/nar/gkt503 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kelly LA, Mezulis S, Yates C et al (2015) The Phyre2 web portal for protein modelling, prediction, and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053 CrossRefGoogle Scholar
  54. 54.
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:526–531. https://doi.org/10.1093/nar/gkh468 CrossRefGoogle Scholar
  57. 57.
    Koehn J, Hunt I (2009) High-throughput protein production (HTPP): a review of enabling technologies to expedite protein production. In: Doyle SA (ed) High throughput protein expression and purification. Methods in molecular biology, vol 498. Humana Press, Totowa, NJGoogle Scholar
  58. 58.
    McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr Sect F Structural Biol Commun 70(Pt.1):2–20. https://doi.org/10.1107/S2053230X13033141 CrossRefGoogle Scholar
  59. 59.
    Mamais M, Degli Esposti A, Kouloumoundra V et al (2017) A new potent inhibitor of glycogen phosphorylase reveals the basicity of the catalytic site. Chem—A Eur J 23(37):8800–8805. https://doi.org/10.1002/chem.201701591 CrossRefGoogle Scholar
  60. 60.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. https://doi.org/10.1021/ci049714+ CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1(1):45–54. https://doi.org/10.1038/nrd706 CrossRefPubMedGoogle Scholar
  62. 62.
    Cavasotto CN (ed) (2017) In silico drug discovery and design theory, methods, challenges, and applications. CRC Press, Boca RatonGoogle Scholar
  63. 63.
    de Vrueh RLA, Crommelin DJA (2017) Reflections on the future of pharmaceutical public-private partnerships: from input to impact. Pharm Res 34(10):1985–1999. https://doi.org/10.1007/s11095-017-2192-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Magda S. Chegkazi
    • 1
    • 2
  • Michael Mamais
    • 1
  • Anastasia I. Sotiropoulou
    • 1
  • Evangelia D. Chrysina
    • 1
  1. 1.Institute of Biology, Medicinal Chemistry and BiotechnologyNational Hellenic Research FoundationAthensGreece
  2. 2.Faculty of Life Sciences and Medicine, Randall Centre for Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations