Reactions in NMR Tubes as Key Weapon in Rational Drug Design

  • Dimitrios Ntountaniotis
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


NMR spectroscopy is a powerful technique suitable for obtaining detailed structural and dynamic data at atomic resolution. Progress in NMR instrumentation has led the scientific community to produce novel techniques which provide valuable information to resolve demanding and crucial questions of molecular biology and rational drug design. This chapter outlines the progress of NMR spectroscopy in the rational drug design. In addition, it offers an example of a reaction in NMR tube for achieving rational drug design.

Key words

NMR spectroscopy for liquids Structural properties Drug design and discovery 


  1. 1.
    Carlon A, Ravera E, Andrałojc W et al (2016) How to tackle protein structural data from solution and solid state: an integrated approach. Prog Nucl Magn Reson Spectrosc 92–93:54–70. CrossRefPubMedGoogle Scholar
  2. 2.
    Fello IC, Pierattelli R (eds) (2014) Intrinsically disordered proteins studies by NMR spectroscopy (Advances in Experimental Medicine and Biology). Springer, Switzerland. CrossRefGoogle Scholar
  3. 3.
    Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117. CrossRefPubMedGoogle Scholar
  4. 4.
    Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38(12):1784–1788.<1784::AID-ANIE1784>3.0.CO;2-QCrossRefGoogle Scholar
  5. 5.
    Carlomagno T, Blommers MJ, Meiler J et al (2003) The high-resolution solution structure of epothilone A bound to tubulin: an understanding of the structure-activity relationships for a powerful class of antitumor agents. Angew Chem Int Ed Engl 42:2511–2515. CrossRefPubMedGoogle Scholar
  6. 6.
    Otting G, Wuthrich K (1990) Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys 1990(23):39–96. CrossRefGoogle Scholar
  7. 7.
    Walters KJ, Ferentz AE, Hare BJ et al (2001) Characterizing protein-protein complexes and oligomers by nuclear magnetic resonance spectroscopy. In: James TL, Dötsch V, Schmitz U (eds) Nuclear magnetic resonance of biological macromolecules - Part B (methods in enzymology), vol 339. Elsevier, New York, pp 238–258. CrossRefGoogle Scholar
  8. 8.
    Walters KJ, Matsuo H, Wagner G (1997) A simple method to distinguish intermonomer nuclear Overhauser effects in homodimeric proteins with C2 symmetry. J Am Chem Soc 119(25):5958–5959. CrossRefGoogle Scholar
  9. 9.
    Maslennikov I, Choe S (2013) Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 23(4):555–562. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu JJ, Horst R, Katritch V et al (2012) Biased signaling pathways in b2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87. CrossRefPubMedGoogle Scholar
  12. 12.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534CrossRefGoogle Scholar
  13. 13.
    Middleton DA (2006) NMR methods for characterising ligand-receptor and drug–membrane interactions in pharmaceutical research. In: Webb GA (ed) Annual reports in NMR spectroscopy, vol 60. Elsevier, New York, pp 39–75. CrossRefGoogle Scholar
  14. 14.
    Ritchie TK, Grinkova YV, Bayburt TH et al (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. In: Düzgünes N (ed) Liposomes, Part F (methods in enzymology). Elsevier, New York. CrossRefGoogle Scholar
  15. 15.
    Keifer PA (2003) Flow NMR applications in combinatorial chemistry. Curr Opin Chem Biol 7:388–394. CrossRefPubMedGoogle Scholar
  16. 16.
    Lenz E, Taylor S, Collins C et al (2002) Flow injection analysis with multiple on-line spectroscopic analysis (UV, IR, 1H-NMR and MS). J Pharm Biomed Anal 27:191–200. CrossRefPubMedGoogle Scholar
  17. 17.
    Louden D, Handley A, Taylor S et al (2000) Flow injection spectroscopic analysis of model drugs using on-line UV-diode array, FT-infrared and 1H-nuclear magnetic resonance spectroscopy and time-of-flight mass spectrometry. Analyst 125:927–931. CrossRefPubMedGoogle Scholar
  18. 18.
    Renaud J-P, Chung C, Danielson H et al (2016) Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 15(10):679–698. CrossRefPubMedGoogle Scholar
  19. 19.
    Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2016) A multidisciplinary approach to high throughput nuclear magnetic resonance spectroscopy. Sensors 16(6):E850. CrossRefPubMedGoogle Scholar
  20. 20.
    Wei Y, Zhang J, Zhou Y (2017) Characterization of glabridin/hydroxypropyl--cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym 159:152–160. CrossRefPubMedGoogle Scholar
  21. 21.
    Araya-Maturana R, Pessoa-Mahana H, Weiss-Lopez B (2008) Very long correlations (nJC,H n>3) in HMBC spectra. Nat Prod Commun 3:445–450Google Scholar
  22. 22.
    Oguadinma P, Bilodeau F, LaPlante R (2017) NMR strategies to support medicinal chemistry workflows for primary structure determination. Bioorg Med Chem Lett 27(2):242–247. CrossRefPubMedGoogle Scholar
  23. 23.
    Nardini V, Palaretti V, Jose da Silva GV (2017) Enantiomeric quantification of amines by 1H and 13C NMR: first report of S-citronellal as chiral derivatization agent (CDA). Microchem J 133:208–215. CrossRefGoogle Scholar
  24. 24.
    Wenzel TJ, Wilcox JD (2003) Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15:256–270. CrossRefPubMedGoogle Scholar
  25. 25.
    Silva MS (2017) Recent advances in multinuclear NMR spectroscopy for chiral recognition of organic compounds. Molecules 22:E247. CrossRefPubMedGoogle Scholar
  26. 26.
    Sulima A, Cheng K, Jacobson AE (2013) Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations. Magn Reson Chem 51:82–88. CrossRefPubMedGoogle Scholar
  27. 27.
    Hansen PE, Kamounah FS, Hansen BKV et al (2007) Conformational and tautomeric eccentricities of 2-acetyl-1,8-dihydroxynaphthalenes. Magn Reson Chem 45:106–117. CrossRefPubMedGoogle Scholar
  28. 28.
    Kolehmainen E, Osmialovski B (2012) 15N NMR studies of tautomerism. Int Rev Phys Chem 31:567–629. CrossRefGoogle Scholar
  29. 29.
    Santos R, Fernandes LM, Boto RF et al (2006) NMR spectroscopy study of 2-methylbenzoxazolium salts hydroxylation in DMSO-d6 solution. Tetrahedron Lett 47:6723–6725. CrossRefGoogle Scholar
  30. 30.
    Rivera A, Núñez ME, Avella E et al (2008) An NMR study of sequential intermediates and collateral products in the conversion of 1,3,6,8-tetraazatricyclo[,8]dodecane (TATD) to 1,3,6,8-tetraazatricyclo[,8]undecane (TATU). Tetrahedron Lett 49:2154–2158. CrossRefGoogle Scholar
  31. 31.
    Mills A, O’Rourke C (2014) Photocatalytic organic synthesis in an NMR tube: C-C coupling of phenoxyacetic acid and acrylamide. Catal Today 230:256–264. CrossRefGoogle Scholar
  32. 32.
    Limtiaco JF, Beni S, Jones CJ (2011) NMR methods to monitor the enzymatic depolymerization of heparin. Anal Bioanal Chem 399:593–603. CrossRefPubMedGoogle Scholar
  33. 33.
    Foley DA, Bez E, Codina A et al (2014) NMR flow tube for online nmr reaction monitoring. Anal Chem 86(24):12008–12013. CrossRefPubMedGoogle Scholar
  34. 34.
  35. 35.
    Ntountaniotis D, Agelis G, Resvani A et al (2014) An efficient synthetic method and theoretical calculations of olmesartan methyl ether: study of biological function of AT1 antagonism. Comb Chem High Throughput Screen 17:652–662. CrossRefPubMedGoogle Scholar
  36. 36.
    Murakami HT, Konno H, Fukutsu N et al (2008) Identification of a degradation product in stressed tablets of olmesartan medoxomil by the complementary use of HPLC hyphenated techniques. J Pharm Biomed Anal 47:553–559. CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang, F, Taizhi WU (2004) 4,6-dihydrofuro[3,4-d]imidazole-6-one derivatives and their salts and process for the preparation of the same. WO/2004/083213A1Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dimitrios Ntountaniotis
    • 1
  1. 1.Department of Chemistry, Laboratory of Organic ChemistryNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations