Lead Identification Through the Synergistic Action of Biomolecular NMR and In Silico Methodologies

  • Konstantinos D. Marousis
  • Aikaterini C. Tsika
  • Maria Birkou
  • Minos-Timotheos Matsoukas
  • Georgios A. SpyrouliasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


The combination of virtual screening with biomolecular NMR can be a powerful approach in the first steps toward drug discovery. Here, we describe how computational methodologies to screen large databases readily available for testing small molecules, in synergy with NMR techniques focused on protein–ligand interactions, can be used in the early lead compound identification process against a protein drug target.

Key words

NMR Structural biology SAR Virtual screening Pharmacophore modeling 


  1. 1.
    Pellecchia M, Sem DS, Wüthrich K (2002) NMR in drug discovery. Nat Rev Drug Discov 1(3):211–219. CrossRefPubMedGoogle Scholar
  2. 2.
    Cosconati S, Marinelli L, Trotta R et al (2009) Tandem application of virtual screening and NMR experiments in the discovery of brand new DNA quadruplex groove binders. J Am Chem Soc 131(45):16336–16337. CrossRefPubMedGoogle Scholar
  3. 3.
    Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. CrossRefPubMedGoogle Scholar
  4. 4.
    O'Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein–protein interactions by NMR spectroscopy. Proteomics 9(23):5224–5232. CrossRefPubMedGoogle Scholar
  5. 5.
    Cala O, Guillière F, Krimm I (2014) NMR-based analysis of protein–ligand interactions. Anal Bioanal Chem 406(4):943–956. CrossRefPubMedGoogle Scholar
  6. 6.
    Davis B (2013) Screening protein–small molecule interactions by NMR. In: Protein–ligand interactions: methods and applications. Humana Press, Totowa, NJ, pp 389–413CrossRefGoogle Scholar
  7. 7.
    Fielding L (2003) NMR methods for the determination of protein–ligand dissociation constants. Curr Top Med Chem 3(1):39–53. CrossRefPubMedGoogle Scholar
  8. 8.
    Heller M, Kessler H (2001) NMR spectroscopy in drug design. Pure Appl Chem 73(9):1429–1436. CrossRefGoogle Scholar
  9. 9.
    Dias DM, Ciulli A (2014) NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol 116(2):101–112. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Palmer AG (2014) Chemical exchange in biomacromolecules: past, present, and future. J Magn Reson 241:3–17. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wrabl JO, Gu J, Liu T et al (2011) The role of protein conformational fluctuations in allostery, function, and evolution. Biophys Chem 159(1):129–141. CrossRefPubMedGoogle Scholar
  12. 12.
    Motlagh HN, Li J, Thompson EB et al (2012) Interplay between allostery and intrinsic disorder in an ensemble. Biochem Soc Trans 40(5):975–980. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814. CrossRefPubMedGoogle Scholar
  15. 15.
    Birkou M, Chasapis CT, Marousis KD et al (2017) A residue specific insight into the Arkadia E3 ubiquitin ligase activity and conformational plasticity. J Mol Biol 429(15):2373–2386. CrossRefPubMedGoogle Scholar
  16. 16.
    Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts G, Lian L-Y (2011) Protein NMR spectroscopy: practical techniques and applications. John Wiley & Sons, ChichesterGoogle Scholar
  18. 18.
    Katsila T, Spyroulias GA, Patrinos GP et al (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Matsoukas M-T, Aranguren-Ibáñez Á, Lozano T et al (2015) Identification of small-molecule inhibitors of calcineurin-NFATc signaling that mimic the PxIxIT motif of calcineurin binding partners. Sci Signal 8(382):ra63. CrossRefPubMedGoogle Scholar
  20. 20.
    Kritsi E, Matsoukas M-T, Potamitis C et al (2016) Exploring new scaffolds for angiotensin II receptor antagonism. Biorg Med Chem 24(18):4444–4451. CrossRefGoogle Scholar
  21. 21.
    Villoutreix BO, Lagorce D, Labbé CM et al (2013) One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov Today 18(21):1081–1089. CrossRefGoogle Scholar
  22. 22.
    Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res (W1):W442–W448. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Angulo J, Nieto PM (2011) STD-NMR: application to transient interactions between biomolecules—a quantitative approach. Eur Biophys J 40(12):1357–1369. CrossRefPubMedGoogle Scholar
  24. 24.
    Cala O, Krimm I (2015) Ligand-orientation based fragment selection in STD NMR screening. J Med Chem 58(21):8739–8742. CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42(8):864–890. CrossRefGoogle Scholar
  26. 26.
    Japelj B, Ilc G, Marušič J et al (2016) Biosimilar structural comparability assessment by NMR: from small proteins to monoclonal antibodies. Sci Rep 6:32201. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cui Y, Wen J, Sze KH et al (2003) Interaction between calcium-free calmodulin and IQ motif of neurogranin studied by nuclear magnetic resonance spectroscopy. Anal Biochem 315(2):175–182. CrossRefPubMedGoogle Scholar
  28. 28.
    Otting G, Wüthrich K (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X (ω1, ω2) double half filter. J Magn Reson 85(3):586–594. CrossRefGoogle Scholar
  29. 29.
    Folmer RH, Hilbers CW, Konings RN et al (1995) A 13C double-filtered NOESY with strongly reduced artefacts and improved sensitivity. J Biomol NMR 5(4):427–432. CrossRefPubMedGoogle Scholar
  30. 30.
    Vaynberg J, Fukuda T, Chen K et al (2005) Structure of an ultraweak protein–protein complex and its crucial role in regulation of cell morphology and motility. Mol Cell 17(4):513–523. CrossRefPubMedGoogle Scholar
  31. 31.
    Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog Nucl Magn Reson Spectrosc 36(4):323–372. CrossRefGoogle Scholar
  32. 32.
    Keller R (2004) The computer aided resonance assignment tutorial. Cantina Verlag, Goldau, SwitzerlandGoogle Scholar
  33. 33.
    Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. CrossRefPubMedGoogle Scholar
  34. 34.
    Baker KA, Hilty C, Peti W et al (2006) NMR-derived dynamic aspects of N-type inactivation of a Kv channel suggest a transient interaction with the T1 domain. Biochemistry 45(6):1663–1672. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Markin CJ, Spyracopoulos L (2012) Increased precision for analysis of protein–ligand dissociation constants determined from chemical shift titrations. J Biomol NMR 53(2):125–138. CrossRefPubMedGoogle Scholar
  36. 36.
    Bertini I, McGreevy KS, Parigi G (2012) NMR of biomolecules: towards mechanistic systems biology. John Wiley & Sons, Chichester. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Konstantinos D. Marousis
    • 1
  • Aikaterini C. Tsika
    • 1
  • Maria Birkou
    • 1
  • Minos-Timotheos Matsoukas
    • 1
  • Georgios A. Spyroulias
    • 1
    Email author
  1. 1.Department of PharmacyUniversity of PatrasPatrasGreece

Personalised recommendations