Advertisement

In Silico Screening of Compound Libraries Using a Consensus of Orthogonal Methodologies

  • Vassilios Myrianthopoulos
  • George Lambrinidis
  • Emmanuel Mikros
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)

Abstract

A number of diverse approaches for efficient screening of compound collections in silico are nowadays available, each with their own methodological background, successes and limitations. Implementation of such virtual screening methods has enabled an impressive acceleration in the search toward the most biologically relevant regions of chemical space and has greatly facilitated the discovery of novel biologically active molecules. It is noteworthy that the range of principles on which the available virtual screening methodologies are based is wide enough for several of these methods to be considered as orthogonal to a good extent. We hereby propose a simple and extensible protocol aiming at integrating the diverse information derived by such virtual screening methods in a consensus manner that can achieve an improvement of the hit rate obtained by individual use of those methods. The protocol can be performed in its basic version as described in this work, but it can also be extended manually by integrating a number of different screening tools and their case-specific variations to further increase the performance of virtual screening in prioritizing the most promising compounds for in vitro evaluations.

Key words

Structure-based screening Ligand-based screening Docking-scoring Similarity search Sampling optimization Frequency-based ranking Linear integration NCI/DTP repository 

References

  1. 1.
    DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012 CrossRefPubMedGoogle Scholar
  2. 2.
    Bleicher KH, Böhm H-J, Müller K et al (2003) A guide to drug discovery: hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369–378. https://doi.org/10.1038/nrd1086 CrossRefPubMedGoogle Scholar
  3. 3.
    Hughes J, Rees S, Kalindjian S et al (2011) Principles of early drug discovery: principles of early drug discovery. Br J Pharmacol 162(6):1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang W (ed) (2016) Computer-aided drug discovery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3521-5 CrossRefGoogle Scholar
  5. 5.
    Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865. https://doi.org/10.1038/nature03197 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li Q, Cheng T, Wang Y et al (2010) PubChem as a public resource for drug discovery. Drug Discov Today 15(23-24):1052–1057. https://doi.org/10.1016/j.drudis.2010.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. https://doi.org/10.1021/ci049714+ CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ma D-L, Chan DS-H, Leung C-H (2013) Drug repositioning by structure-based virtual screening. Chem Soc Rev 42:2130. https://doi.org/10.1039/c2cs35357a CrossRefPubMedGoogle Scholar
  10. 10.
    Langer T (2010) Pharmacophores in drug research. Mol Inform 29(6-7):470–475. https://doi.org/10.1002/minf.201000022 CrossRefPubMedGoogle Scholar
  11. 11.
    Rognan D (2010) Structure-based approaches to target fishing and ligand profiling. Mol Inform 29(3):176–187. https://doi.org/10.1002/minf.200900081 CrossRefPubMedGoogle Scholar
  12. 12.
    Hecker EA, Duraiswami C, Andrea TA et al (2002) Use of Catalyst Pharmacophore models for screening of large combinatorial libraries. J Chem Inf Comput Sci 42(5):1204–1211. https://doi.org/10.1021/ci020368a CrossRefPubMedGoogle Scholar
  13. 13.
    Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to Pharmacophore Modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x CrossRefPubMedGoogle Scholar
  14. 14.
    Wolber G, Dornhofer AA, Langer T (2007) Efficient overlay of small organic molecules using 3D pharmacophores. J Comput Aided Mol Des 20(12):773–788. https://doi.org/10.1007/s10822-006-9078-7 CrossRefGoogle Scholar
  15. 15.
    Richmond NJ, Abrams CA, Wolohan PRN et al (2006) GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput Aided Mol Des 20(9):567–587. https://doi.org/10.1007/s10822-006-9082-y CrossRefPubMedGoogle Scholar
  16. 16.
    Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. https://doi.org/10.1093/nar/gkn187 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82. https://doi.org/10.1021/jm0603365 CrossRefGoogle Scholar
  18. 18.
    Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring new biology: Miniperspective. J Med Chem 59(9):4103–4120. https://doi.org/10.1021/acs.jmedchem.5b02008 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860. https://doi.org/10.2174/09298673113209990001 CrossRefPubMedGoogle Scholar
  20. 20.
    Dias R, de Azevedo WF (2008) Molecular docking algorithms. Curr Drug Targets 9(12):1040–1047. https://doi.org/10.2174/138945008786949432 CrossRefPubMedGoogle Scholar
  21. 21.
    Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47(3):558–565. https://doi.org/10.1021/jm0302997 CrossRefGoogle Scholar
  22. 22.
    Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys PCCP 12(40):12899–12908. https://doi.org/10.1039/c0cp00151a CrossRefPubMedGoogle Scholar
  23. 23.
    Ewing TJ, Makino S, Skillman AG et al (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428. https://doi.org/10.1023/A:1011115820450 CrossRefPubMedGoogle Scholar
  24. 24.
    Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BCrossRefGoogle Scholar
  25. 25.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wu G, Robertson DH, Brooks CL et al (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562. https://doi.org/10.1002/jcc.10306 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897 CrossRefGoogle Scholar
  28. 28.
    Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10(4):e1003571. https://doi.org/10.1371/journal.pcbi.1003571 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52(4):867–881. https://doi.org/10.1021/ci200528d CrossRefPubMedGoogle Scholar
  30. 30.
    Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein-ligand docking and structure-based virtual screening. Wiley Interdiscip Rev Comput Mol Sci 1(2):229–259. https://doi.org/10.1002/wcms.18 CrossRefGoogle Scholar
  31. 31.
    Lam PC-H, Abagyan R, Totrov M (2017) Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-017-0058-x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Spyrakis F, Ahmed MH, Bayden AS et al (2017) The roles of water in the protein matrix: a largely untapped resource for drug discovery. J Med Chem 60(16):6781–6827. https://doi.org/10.1021/acs.jmedchem.7b00057 CrossRefPubMedGoogle Scholar
  33. 33.
    Lagarde N, Zagury J-F, Montes M (2015) Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives. J Chem Inf Model 55(7):1297–1307. https://doi.org/10.1021/acs.jcim.5b00090 CrossRefPubMedGoogle Scholar
  34. 34.
    Plewczynski D, Łaźniewski M, Augustyniak R et al (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32(4):742–755. https://doi.org/10.1002/jcc.21643 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys PCCP 18:12964–12975. https://doi.org/10.1039/C6CP01555G CrossRefPubMedGoogle Scholar
  36. 36.
    Chaput L, Martinez-Sanz J, Saettel N et al (2016) Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. J Cheminform 8:56. https://doi.org/10.1186/s13321-016-0167-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. https://doi.org/10.1021/jm050362n CrossRefGoogle Scholar
  38. 38.
    Carlson HA, Smith RD, Damm-Ganamet KL et al (2016) CSAR 2014: a benchmark exercise using unpublished data from Pharma. J Chem Inf Model 56(6):1063–1077. https://doi.org/10.1021/acs.jcim.5b00523 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Polgár T, Baki A, Szendrei GI et al (2005) Comparative virtual and experimental high-throughput screening for glycogen synthase kinase-3beta inhibitors. J Med Chem 48(25):7946–7959. https://doi.org/10.1021/jm050504d CrossRefPubMedGoogle Scholar
  40. 40.
    Ferreira RS, Simeonov A, Jadhav A et al (2010) Complementarity between a docking and a high-throughput screen in discovering new Cruzain inhibitors. J Med Chem 53(13):4891–4905. https://doi.org/10.1021/jm100488w CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Spitzer R, Jain AN (2012) Surflex-Dock: docking benchmarks and real-world application. J Comput Aided Mol Des 26(6):687–699. https://doi.org/10.1007/s10822-011-9533-y CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cross JB, Thompson DC, Rai BK et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474. https://doi.org/10.1021/ci900056c CrossRefPubMedGoogle Scholar
  43. 43.
    Myrianthopoulos V, Gaboriaud-Kolar N, Tallant C et al (2016) Discovery and optimization of a selective ligand for the switch/sucrose nonfermenting-related Bromodomains of Polybromo Protein-1 by the use of virtual screening and hydration analysis. J Med Chem 59(19):8787–8803. https://doi.org/10.1021/acs.jmedchem.6b00355 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Myrianthopoulos V, Cartron PF, Liutkevičiūtė Z et al (2016) Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation. Eur J Med Chem 114:390–396. https://doi.org/10.1016/j.ejmech.2016.02.043 CrossRefPubMedGoogle Scholar
  45. 45.
    Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of Estrogen receptor/Coactivator recognition and the antagonism of this interaction by Tamoxifen. Cell 95(7):927–937. https://doi.org/10.1016/S0092-8674(00)81717-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Lambrinidis G, Halabalaki M, Katsanou ES et al (2006) The estrogen receptor and polyphenols: molecular simulation studies of their interactions, a review. Environ Chem Lett 4(3):159–174. https://doi.org/10.1007/s10311-006-0065-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vassilios Myrianthopoulos
    • 1
    • 2
  • George Lambrinidis
    • 1
  • Emmanuel Mikros
    • 1
    • 2
  1. 1.Department of PharmacyNational and Kapodistrian University of Athens, Panepistimiopolis ZografouAthensGreece
  2. 2.“Athena” Research and Innovation CenterAthensGreece

Personalised recommendations