Advertisement

The Impact of Lipophilicity in Drug Discovery: Rapid Measurements by Means of Reversed-Phase HPLC

  • Constantinos Giaginis
  • Fotios Tsopelas
  • Anna Tsantili-Kakoulidou
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)

Abstract

Lipophilicity constitutes a vital physicochemical property in drug design as it is connected with pharmacodynamic and pharmacokinetic properties as well as toxicological aspects of candidate drugs. Traditional partitioning experiments to determine n-octanol-water coefficients are laborious and time-consuming, while they cannot be reliably performed for highly lipophilic or compounds undergoing degradation. Alternatively, lipophilicity of candidate drugs can be accurately and reproducibly determined using reversed-phase liquid chromatography. In this chapter, the details of protocols for lipophilicity assessment using reversed-phase HPLC, under conditions which provide the best simulation of n-octanol-water partition coefficients, are described.

Key words

Lipophilicity n-Octanol-water partition coefficient Reversed-phase HPLC Extrapolated retention factors n-Octanol as mobile phase additive 

References

  1. 1.
    Hansch C, Leo A (eds) (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, D.C.Google Scholar
  2. 2.
    Testa B, Crivori P, Reist M, Carrupt P-A (2000) The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov 17:179–211. https://doi.org/10.1023/A:1008741731244 CrossRefGoogle Scholar
  3. 3.
    Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875. https://doi.org/10.1517/17460441.2012.714363 CrossRefPubMedGoogle Scholar
  4. 4.
    Tsopelas F, Giaginis C, Tsantili-Kakoulidou A (2017) Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov 12(9):885–896. https://doi.org/10.1080/17460441.2017.1344210 CrossRefPubMedGoogle Scholar
  5. 5.
    Meyer H (1899) Zur Theorie der Alkohol-narkose. Arch Exp Pathol Pharmakol 42:109–118. https://doi.org/10.1007/BF01834480 CrossRefGoogle Scholar
  6. 6.
    Overton E (1901) Studien uber die narkose zugleich ein beitrag zur allgemeinen pharmakologie. Gustav Fischer, JenaGoogle Scholar
  7. 7.
    Hansch C, Fujita T (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626. https://doi.org/10.1021/ja01062a035 CrossRefGoogle Scholar
  8. 8.
    Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616. https://doi.org/10.1021/cr60274a001 CrossRefGoogle Scholar
  9. 9.
    Avdeef A (2003) Absorption and drug development. Solubility, permeability and charge state. Wiley, Hoboken, NJ. https://doi.org/10.1002/047145026X CrossRefGoogle Scholar
  10. 10.
    Tsantili-Kakoulidou A, Piperaki S, Panderi I et al (1997) Prediction of distribution coefficients from structure. The influence of ion pair formation as reflected in experimental and calculated values. QSAR Comb Sci 16(4):315–316. https://doi.org/10.1002/qsar.19970160407 CrossRefGoogle Scholar
  11. 11.
    Pagliara A, Carrupt P-A, Caron G et al (1997) Lipophilicity profiles of Ampholytes. Chem Rev 97(8):3385–3400. https://doi.org/10.1021/cr9601019 CrossRefPubMedGoogle Scholar
  12. 12.
    Hansch C, Bjorkroth JP, Leo A (1987) Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 76(9):663–687. https://doi.org/10.1002/jps.2600760902 CrossRefPubMedGoogle Scholar
  13. 13.
    Kubinyi H (1979) Lipophilicity and biological activity. Drug transport and drug distribution in model systems and in biological systems. Arzneimittelforschung 29(8):1067–1080PubMedGoogle Scholar
  14. 14.
    Dearden JC (1990) Molecular structure and drug transport. In: Ramsden CA, Hansch C, Sammer PG, Taylor JB (eds) Comprehensive medicinal chemistry. The rational design, mechanistic study & therapeutic applications of chemical compounds, vol 4. Pergamon, Oxford, pp 375–411Google Scholar
  15. 15.
    G C, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 6(4):317–324. https://doi.org/10.1016/S0928-0987(97)10019-7 CrossRefGoogle Scholar
  16. 16.
    Camenisch G, Folkers G, van de Waterbeemd H (1998) Shapes of membrane permeability-lipophilicity curves: extension of theoretical models with an aqueous pore pathway. Eur J Pharm Sci 6(4):321–329. https://doi.org/10.1016/S0928-0987(98)00033-5 CrossRefGoogle Scholar
  17. 17.
    Snyder PW, Mecinović J, Moustakas DT et al (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 108:17889–17894. https://doi.org/10.1073/pnas.1114107108 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Freire E (2004) Isothermal titration calorimetry: controlling binding forces in lead optimization. Drug Discov Today Technol 1:295–299. https://doi.org/10.1016/j.ddtec.2004.11.016 CrossRefPubMedGoogle Scholar
  19. 19.
    Smith DA, van de Waterbeemd H (1999) Pharmacokinetics and metabolism in early drug discovery. Curr Opin Chem Biol 4:373–378. https://doi.org/10.1016/S1367-5931(99)80056-8 CrossRefGoogle Scholar
  20. 20.
    Rowley M, Kulagowski JJ, Watt AP et al (1997) Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 40:4053–4068. https://doi.org/10.1021/jm970417o CrossRefPubMedGoogle Scholar
  21. 21.
    Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A (2015) In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 86:27–45. https://doi.org/10.1016/j.addr.2015.03.011 CrossRefPubMedGoogle Scholar
  22. 22.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  23. 23.
    Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n CrossRefGoogle Scholar
  24. 24.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877. https://doi.org/10.1016/S1359-6446(03)02831-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834. https://doi.org/10.1021/jm701122q CrossRefPubMedGoogle Scholar
  26. 26.
    Vallianatou T, Giaginis C, Tsantili-Kakoulidou A (2015) The impact of physicochemical and molecular properties in drug design: navigation in the “drug-like” chemical space. Adv Exp Med Biol 822:187–194. https://doi.org/10.1007/978-3-319-08927-0_21 CrossRefPubMedGoogle Scholar
  27. 27.
    Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8(3):203–212. https://doi.org/10.1038/nrd2796 CrossRefPubMedGoogle Scholar
  28. 28.
    Ferenczy GG, Keseru GM (2015) The impact of binding thermodynamics on medicinal chemistry optimizations. Future Med Chem 7(10):1285–1303. https://doi.org/10.4155/fmc.15.63 CrossRefPubMedGoogle Scholar
  29. 29.
    Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular Lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98(3):861–893. https://doi.org/10.1002/jps.21494 CrossRefPubMedGoogle Scholar
  30. 30.
    Testa B, Carrupt PA, Gaillard P, Tsai RS (1996) Intramolecular interactions encoded in lipophilicity: their nature and significance. In: Pliska V, Testa B, van de Waterbeemd H (eds) Lipophilicity in drug action and toxicology. VCH, Weinheim, pp 49–71. https://doi.org/10.1002/9783527614998.ch4 CrossRefGoogle Scholar
  31. 31.
    Chrysanthakopoulos M, Koletsou A, Nicolaou I et al (2009) Lipophilicity studies on pyrrolyl-acetic acid derivatives. Experimental versus predicted logP values in relationship with aldose reductase inhibitory activity. QSAR Comb Sci 28:551–560. https://doi.org/10.1002/qsar.200860138 CrossRefGoogle Scholar
  32. 32.
    Hersey A, Hill AP, Hyde RM, Livingstone DJ (1989) Principles of method selection in partition studies. Quant Struct Act Relat 8:288–296. https://doi.org/10.1002/qsar.19890080405 CrossRefGoogle Scholar
  33. 33.
    Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. John Wiley & Sons, Inc., New YorkGoogle Scholar
  34. 34.
    Avdeef A (1993) pH-metric logP. 2. Refinement of partition coefficients and ionization constants of Multiprotic substances. J Pharm Sci 82:183–190. https://doi.org/10.1002/jps.2600820214 CrossRefPubMedGoogle Scholar
  35. 35.
    Dorsey JG, Khaledi MG (1993) Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes. J Chromatogr A 656:485–499. https://doi.org/10.1016/0021-9673(93)80815-P CrossRefGoogle Scholar
  36. 36.
    Bechalany A, Tsantili-Kakoulidou A, El Tayar N, Testa B (1991) Measurement of lipophilicity indices by reversed-phase high-performance liquid chromatography: comparison of two stationary phases and various eluents. J Chromatogr 541:221–229. https://doi.org/10.1016/S0021-9673(01)95994-1 CrossRefGoogle Scholar
  37. 37.
    Giaginis C, Tsantili-Kakoulidou A (2008) Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J Liq Chromatogr Relat Technol 31(1):79–96. https://doi.org/10.1080/10826070701665626 CrossRefGoogle Scholar
  38. 38.
    Van de Waterbeemd H, Kansy M, Wagner B, Fischer H (1996) Lipophilicity measurement by high performance liquid chromatography (RP-HPLC). In: Pilska V, Testa B, Van de Waterbeemd H (eds) Lipophilicity in drug action and toxicology. VCH, Weinheim, p 73. https://doi.org/10.1002/9783527614998.ch5 CrossRefGoogle Scholar
  39. 39.
    Vrakas D, Panderi I, Hadjipavlou-Litina D, Tsantili-Kakoulidou A (2005) Investigation of the relationships between logP and various chromatographic indices for a series of substituted coumarins. Evaluation of their similarity/dissimilarity using multivariate statistics. Quant Struct Act Relat 24:254–269. https://doi.org/10.1002/qsar.200430898 CrossRefGoogle Scholar
  40. 40.
    Pagliara A, Khamis E, Trinh A et al (1995) Structural properties governing retention mechanisms on RP-HPLC stationary phases used for lipophilicity measurements. J Liq Chromatogr 18(9):1721–1745. https://doi.org/10.1080/10826079508010002 CrossRefGoogle Scholar
  41. 41.
    Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2013) Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive. J Sep Sci 36:3830–3836. https://doi.org/10.1002/jssc.201300711 CrossRefPubMedGoogle Scholar
  42. 42.
    Tsantili-Kakoulidou A, Antoniadou-Vyza A (1989) Determination of the partition coefficients of adamantyl derivatives by reversed phase TLC and HPLC. Prog Clin Biol Res 291:71–74PubMedGoogle Scholar
  43. 43.
    Valko K, Bevan C, Reynolds D (1997) Chromatographic hydrophobicity index by fast-gradient RPHPLC: a high-throughput alternative to log P/log D. Anal Chem 69:2022–2029. https://doi.org/10.1021/ac961242d CrossRefPubMedGoogle Scholar
  44. 44.
    Valko K (2004) Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A 1037:299–310. https://doi.org/10.1016/j.chroma.2003.10.084 CrossRefPubMedGoogle Scholar
  45. 45.
    Valko K, Slegel P (1993) New chromatographic hydrophobicity index (φ0) based on the slope and the intercept of the log k_ versus organic phase concentration plot. J Chromatogr A 631:49–61. https://doi.org/10.1016/0021-9673(93)80506-4 CrossRefGoogle Scholar
  46. 46.
    Lombardo F, Shalaeva MY, Tupper KA, Gao F (2001) ElogDoct: a tool for Lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem 44(15):2490–2497. https://doi.org/10.1021/jm0100990 CrossRefPubMedGoogle Scholar
  47. 47.
    Liu X, Tanaka H, Yamauchi A et al (2005) Determination of lipophilicity by reversed-phase high-performance liquid chromatography: influence of 1-octanol in the mobile phase. J Chromatogr A 1091:51–59. https://doi.org/10.1016/j.chroma.2005.07.029 CrossRefPubMedGoogle Scholar
  48. 48.
    Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2006) Contribution to the standardization of the chromatographic conditions for the lipophilicity assessment of neutral and basic drugs. Anal Chim Acta 573:311–318. https://doi.org/10.1016/j.aca.2006.03.074 CrossRefPubMedGoogle Scholar
  49. 49.
    Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2007) Octanol/water partitioning simulation by reversed phase HPLC for structurally diverse acidic drugs: effect of octanol as mobile phase additive. J Chromatogr A 1166:116–125. https://doi.org/10.1016/j.chroma.2007.08.004 CrossRefPubMedGoogle Scholar
  50. 50.
    Schoenmakers PJ, Billiet HAH, de Galan L (1979) Influence of organic modifiers on the retention behaviour in reversed-phase liquid chromatography and its consequences for gradient elution. J Chromatogr 185:179–195. https://doi.org/10.1016/S0021-9673(00)85604-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Constantinos Giaginis
    • 1
  • Fotios Tsopelas
    • 2
  • Anna Tsantili-Kakoulidou
    • 3
  1. 1.Department of Food Science and Nutrition, School of EnvironmentUniversity of the AegeanMyrinaGreece
  2. 2.Laboratory of Inorganic and Analytical Chemistry, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  3. 3.Department of Pharmaceutical Chemistry, Faculty of PharmacyNational and Kapodistrian University of Athens, Panepistimiopolis, ZografouAthensGreece

Personalised recommendations