Skip to main content

Uncovering the Stability of Mature miRNAs by 4-Thio-Uridine Metabolic Labeling

  • Protocol
  • First Online:
miRNA Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1823))

Abstract

MicroRNAs (miRNAs) are an evolutionary conserved class of short, single-stranded noncoding RNAs (<18–22 nt in length) that act in posttranscriptional regulation of gene expression in higher eukaryotes. The abundance of a miRNA is a key feature in control of its activity and, therefore, a number of mechanisms finely regulate miRNA levels, acting at both transcriptional and posttranscriptional level. Recent evidences, including our research, highlighted the role of miRNA decay as a mechanism controlling the miRNA pool. We describe in this chapter an optimized methodology to determine miRNA degradation rates in mammalian cells. Our approach is based on metabolic pulse labeling with 4-thiouridine (4sU), a uridine analog that is incorporated in nascent RNA and allows thiol-specific biotinylation and selective pull-down of labeled RNA. In particular, given the long average half-life and the complex biogenetic process of miRNAs, we developed a “pulse-chase” protocol where 4sU is removed from the medium after a long labeling period (2–3 h pulse), and labeled RNA is purified at different time points to measure the decay of labeled molecules. By combining the 4sU-based “pulse-chase” approach with high-throughput small RNA sequencing (sRNAseq), it is possible to quantify at genome-wide level miRNA degradation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141(4):618–631. https://doi.org/10.1016/j.cell.2010.03.039

    Article  PubMed  CAS  Google Scholar 

  2. Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, Gorski MG, Kress T, Pelizzola M, Muller H, Amati B, Nicassio F (2016) Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 26:554. https://doi.org/10.1101/gr.198788.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rissland OS, Hong S-J, Bartel DP (2011) MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell 43(6):993–1004. https://doi.org/10.1016/j.molcel.2011.08.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843

    Article  PubMed  CAS  Google Scholar 

  5. Tani H, Akimitsu N (2012) Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 9(10):1233–1238. https://doi.org/10.4161/rna.22036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A (2011) Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29(5):436–442. https://doi.org/10.1038/nbt.1861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Marzi MJ, Puggioni EM, Dall'Olio V, Bucci G, Bernard L, Bianchi F, Crescenzi M, Di Fiore PP, Nicassio F (2012) Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J Cell Biol 199(1):77–95. https://doi.org/10.1083/jcb.201206033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dolken L, Ruzsics Z, Radle B, Friedel CC, Zimmer R, Mages J, Hoffmann R, Dickinson P, Forster T, Ghazal P, Koszinowski UH (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9):1959–1972. https://doi.org/10.1261/rna.1136108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Muller H, Marzi MJ, Nicassio F (2014) IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol 2:38. https://doi.org/10.3389/fbioe.2014.00038

    Article  PubMed  PubMed Central  Google Scholar 

  10. de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Grosshans H (2015) Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep 16(4):500–511. https://doi.org/10.15252/embr.201540078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol Cell 59(5):858–866. https://doi.org/10.1016/j.molcel.2015.07.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kim YK, Yeo J, Kim B, Ha M, Kim VN (2012) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46(6):893–895. https://doi.org/10.1016/j.molcel.2012.05.036

    Article  PubMed  CAS  Google Scholar 

  13. Hwang HW, Wentzel EA, Mendell JT (2009) Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A 106(17):7016–7021. https://doi.org/10.1073/pnas.0811523106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matteo J. Marzi or Francesco Nicassio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marzi, M.J., Nicassio, F. (2018). Uncovering the Stability of Mature miRNAs by 4-Thio-Uridine Metabolic Labeling. In: Ørom, U. (eds) miRNA Biogenesis. Methods in Molecular Biology, vol 1823. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8624-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8624-8_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8623-1

  • Online ISBN: 978-1-4939-8624-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics