Advertisement

An Integrative Approach to Virus–Host Protein–Protein Interactions

  • Helen V. Cook
  • Lars Juhl Jensen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1819)

Abstract

Since cell regulation and protein expression can be dramatically altered upon infection by viruses, studying the mechanisms by which viruses infect cells and the regulatory networks they disrupt is essential to understanding viral pathogenicity. This line of study can also lead to discoveries about the workings of host cells themselves. Computational methods are rapidly being developed to investigate viral-host interactions, and here we highlight recent methods and the insights that they have revealed so far, with a particular focus on methods that integrate different types of data. We also review the challenges of working with viruses compared with traditional cellular biology, and the limitations of current experimental and informatics methods.

Key words

Viruses Virus–host interactions Databases Bioinformatics Machine learning Orthology Host prediction Viral evolution Coevolution PPI networks Network rewiring 

Notes

Acknowledgements

Thanks to Lars Juhl Jensen for his early review of this chapter and constructive comments. Thanks also to Alberto Santos and Louise von Stechow for their thorough feedback.

References

  1. 1.
    Marz M, Beerenwinkel N, Drosten C, Fricke M, Frishman D, Hofacker IL, Hoffmann D, Middendorf M, Rattei T, Stadler PF, Töpfer A (2014) Challenges in RNA virus bioinformatics. Bioinformatics 30(13):1793–1799PubMedCrossRefGoogle Scholar
  2. 2.
    Friedel CC (2013) Computational analysis of virus-host interactomes. In: Bailer SM, Lieber D, Walker JM (eds) Virus-host interactions methods and protocols, chap 8. Springer, Berlin, pp 115–130Google Scholar
  3. 3.
    Seymour LW, Fisher KD (2016) Oncolytic viruses: finally delivering. Br J Cancer 114(4):357–361PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–587PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358PubMedCrossRefGoogle Scholar
  6. 6.
    Daugherty MD, Malik HS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46(1):677–700PubMedCrossRefGoogle Scholar
  7. 7.
    Maynard ND, Gutschow MV, Birch EW, Covert MW (2010) The virus as metabolic engineer. Biotechnol J 5(7):686–694PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361PubMedCrossRefGoogle Scholar
  9. 9.
    Microbiology by numbers (2011) Nat Rev Microbiol 9(9):628–628Google Scholar
  10. 10.
    Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio C Soloyvov A, Ojeda-Flores R, Arrigio NC, Islam A, Kahn SA, Hosseini P, Bogich TL, Mazet JK, Daszak P, Ian Lipkin W (2013) A strategy to estimate unknown viral diversity in mammals. mBio 4(5):1–15Google Scholar
  11. 11.
    Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, Sanmiguel AJ, Minot S, Bushman FD Grice A (2015) The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6(5):1–13Google Scholar
  12. 12.
    Roossinck MJ. The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9(2):99–108, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Villarreal LP (2007) Virus-host symbiosis mediated by persistence. Symbiosis 44(1–3):1–9Google Scholar
  14. 14.
    Murray NEA, Quam MB,Wilder-Smith A (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5:299–309Google Scholar
  15. 15.
    WHO (2014) WHO fact sheets: influenza, HCV, HPVGoogle Scholar
  16. 16.
    Molinari NAM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25(27):5086–5096PubMedCrossRefGoogle Scholar
  17. 17.
    Klepac P, Metcalf CJE, McLean AR, Hampson K (2013) Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases. Philos. Trans R Soc Ser B Biol Sci 368(1623):20120137CrossRefGoogle Scholar
  18. 18.
    Ehreth J (2003) The global value of vaccination. Vaccine 21(7–8):596–600PubMedCrossRefGoogle Scholar
  19. 19.
    Havers F, Sokolow L, Shay DK, Farley MM, Monroe M, Meek J, Kirley PD, Bennett NM, Morin C, Aragon D, Thomas A, Schaffner W, Zansky SM, Baumbach J, Ferdinands J, Fry AM (2016) Case-control study of vaccine effectiveness in preventing laboratory-confirmed influenza hospitalizations in older adults, United States, 2010–2011. Clin Infect Dis 63(10):1304–1311PubMedCrossRefGoogle Scholar
  20. 20.
    Blair W, Cox C (2016) Current Landscape of Antiviral Drug Discovery. F1000Research 5(5):202Google Scholar
  21. 21.
    Razonable RR (2011) Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 86(10):1009–1026PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1(1):13–25PubMedCrossRefGoogle Scholar
  23. 23.
    Noble CG, Chen YL, Dong H, Gu F, Lim SP, Schul W, Wang Q-Y, Shi P-Y (2010) Strategies for development of Dengue virus inhibitors. Antivir Res 85(3):450–462PubMedCrossRefGoogle Scholar
  24. 24.
    Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118(11):1507–1514PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fauci AS, Morens DM (2016) Zika virus in the Americas — yet another arbovirus threat. N Engl J Med 374:601–604PubMedCrossRefGoogle Scholar
  26. 26.
    Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35(3):235–241Google Scholar
  27. 27.
    Izmailyan R, Hsao J-C, Chung C-S, Chen C-H, Hsu PW-C, Liao C-L, Chang W (2012) Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 86(12):6677–6687PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24(5):212–218PubMedCrossRefGoogle Scholar
  29. 29.
    Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng X-W, Federici BA, Van Etten JA, Koonin EV, La Scola B, Raoult D (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158(12):2517–2521PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Scheel TKH, Rice CM (2013) Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19(7):837–849PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Howley PM, Knipe DM (eds) (2013) Field’s virology. Lippincott Williams & Williams, PhiladelphiaGoogle Scholar
  32. 32.
    Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Acevedo A, Andino R (2014) Library preparation for highly accurate population sequencing of RNA viruses. Nat Protoc 9(7):1760–1769PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Vossen MTM, Westerhout EM, Söderberg-Nauclér C, Wiertz EJHJ (2002) Viral immune evasion: a masterpiece of evolution. Immunogenetics 54(8):527–542PubMedCrossRefGoogle Scholar
  35. 35.
    Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6(7):e1001005PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Roossinck MJ (2008) Plant virus evolution. Springer, BerlinGoogle Scholar
  37. 37.
    Wylie CS, Shakhnovich EI. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation. PLoS Comput Biol 8(8):2012PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pauly MD, Lauring AS (2015) Effective lethal mutagenesis of influenza virus by three nucleoside analogs. J Virol 89(7):3584–3597PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, Chen S-H, Lu I-H, Lin C-Y, Chin RG, Luan HH, Nguyen N, Nelson SF, Li X, Wu T-T, Sun R (2014) High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci Rep 4:1–8Google Scholar
  40. 40.
    Thyagarajan B, Bloom JD (2014) The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. eLife 2014(3):1–26Google Scholar
  41. 41.
    Sumedha B, Bouchard MJ (2014) Cell cycle regulation during viral infection. In: Sivakumar S, Daum JR, Gorbsky GJ (eds) Cell cycle control, vol 1170. Springer, BerlinGoogle Scholar
  42. 42.
    Welch MD (2015) Why should cell biologists study microbial pathogens? Mol Biol Cell 26(24):4295–4301PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–1315CrossRefGoogle Scholar
  44. 44.
    Frischknecht F, Cudmore S, Moreau V, Reckmann I, Röttger S, Michael W (1999) Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr Biology 9(2):89–92PubMedCrossRefGoogle Scholar
  45. 45.
    Lim K, Hyun Y-M, Lambert-Emo K, Capece T, Bae S, Miller R, Topham DJ, Kim M (2015) Neutrophil trails guide influenza-specific CD8(+) T cells in the airways. Science 349(6252):aaa4352PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN (2015) The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol 10(5):537–546PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89(10):2359–2376PubMedCrossRefGoogle Scholar
  48. 48.
    Meyniel-Schicklin L, de Chassey B, Andre P, Lotteau V (2012) Viruses and interactomes in translation. Mol Cell Proteomics 11(7):M111.014738–M111.014738CrossRefGoogle Scholar
  49. 49.
    Charon J, Theil S, Nicaise V, Michon T (2016) Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. Mol BioSyst 12(2):634–652PubMedCrossRefGoogle Scholar
  50. 50.
    Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2014) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151PubMedCrossRefGoogle Scholar
  51. 51.
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2011) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631Google Scholar
  53. 53.
    Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mazzon M, Mercer J (2014) Lipid interactions during virus entry and infection. Cell Microbiol 16(10):1493–1502PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li X, Li Y, Wang C, Miao Z, Bi X, Wu D, Jin N, Wang L, Wu H, Qian K, Li C, Zhang T, Zhang C, Yi Y, Lai H, Hu Y, Cheng L, Leung KS, Li X, Zhang F, Li K, Wang D (2015) ViRBase: a resource for virus-host ncRNA-associated interactions. Nucleic Acids Res 43(D1):D578–D582PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Schaefer MH, Serrano L, Andrade-Navarro MA (2015) Correcting for the study bias associated with protein-protein interaction measurements reveals differences between protein degree distributions from different cancer types. Front Genet 6(Aug):1–8Google Scholar
  57. 57.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574CrossRefGoogle Scholar
  58. 58.
    Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lum KK, Cristea IM (2016) Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics 13(3): 325–340PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Roux KJ, Kim DI, Burke B (2013) BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 19:74Google Scholar
  62. 62.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY (2014) Directed evolution of APEX2 for electron microscopy and proximity labeling_Supplementary. Nat Methods 12(1):51–54PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kim DI, Jensen SC, Noble KA, Birendra KC, Roux KH, Motamedchaboki K, Roux KJ (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27(8):1188–1196PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ, Pedram K, Carr SA, Ting AY (2016) Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat Protoc 11(3):456–475PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(Database issue):D583–D587PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gerold G, Bruening J, Pietschmann T (2015) Decoding protein networks during virus entry by quantitative proteomics. Virus Res 218:25–39PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mehta V, Trinkle-Mulcahy L (2016) Recent advances in large-scale protein interactome mapping. F1000Research 5(0):782CrossRefGoogle Scholar
  68. 68.
    de Chassey B, Meyniel-Schicklin L, Vonderscher J, André P, Lotteau V (2014) Virus-host interactomics: new insights and opportunities for antiviral drug discovery. Genome Med 6(11):115Google Scholar
  69. 69.
    Germain M-A, Chatel-Chaix L, Gagné B, Bonneil E, Thibault P, Pradezynski F, de Chassey B, Meyniel-Schicklin L, Lotteau V, Baril M, Lamarre D (2014) Elucidating novel Hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol Cell Proteomics 13(1):184–203CrossRefGoogle Scholar
  70. 70.
    Lajko M, Haddad AF, Robinson CA, Connolly SA (2015) Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: limitations for integral membrane proteins. J Virol Methods 221:395–401PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Calderone A, Licata L, Cesareni G (2014) VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Res 43(D1):1–5PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ammari MG, Gresham CR, McCarthy FM, Nanduri B (2016) HPIDB 2.0: a curated database for host-pathogen interactions. Database 2016:baw103PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S, Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem B, Scheuermann RH (2012) ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40(D1):593–598PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Attwood T, Agit B, Ellis L 2015 Longevity of biological databases. EMBnet.journal 21(0):e803Google Scholar
  75. 75.
    Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf 4:2Google Scholar
  76. 76.
    HUPO Proteomics Standards Initiative. Molecular Interactions - HUPO Proteomics Standards Initiative.Google Scholar
  77. 77.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2016) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Yost SA, Marcotrigiano J (2013) Viral precursor polyproteins: keys of regulation from replication to maturation. Curr Opin Virol 3(2):137–142PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    The UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212Google Scholar
  80. 80.
    Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12(1):32–42PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shen SH, Stauft CB, Gorbatsevych O, Song Y, Ward CB, Yurovsky A, Mueller S, Futcher B, Wimmer E (2015) Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proc Natl Acad Sci USA 112(15):4749–4754CrossRefGoogle Scholar
  82. 82.
    Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107(8):3645–3650CrossRefGoogle Scholar
  83. 83.
    Reddy T, Sansom MSP (2016) Computational virology: from the inside out. Biochim Biophys Acta Biomembr 1858(7):1610–1618CrossRefGoogle Scholar
  84. 84.
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE (2016) Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 40(2):258–272PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Villarroel J, Kleinheinz K, Jurtz V, Zschach H, Lund O, Nielsen M, Larsen M (2016) HostPhinder: a phage host prediction tool. Viruses 8(5):116PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Harper JW, Adams PD (2001) Cyclin-dependent kinases. Chem Rev 101(8):2511–2526PubMedCrossRefGoogle Scholar
  87. 87.
    Conrad B, Antonarakis SE (2007) Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 8:17–35PubMedCrossRefGoogle Scholar
  88. 88.
    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2015) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44(Database issue):286–293PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simão FA, Pozdnyakov IA, Ioannidis P, Zdobnov EM (2015) OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res 43(D1):D250–D256PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, Forslund K, Huerta-Cepas J, Linard B, Pereira C, Pryszcz LP, Schreiber F, da Silva AS, Szklarczyk D, Train C-M, Bork P, Lecompte O, von Mering C, Xenarios I, Sjölander K, Jensen LJ, Martin MJ, Muffato M, Gabaldón T, Lewis SE, Thomas PD, Sonnhammer E, Dessimoz C (2016) Standardized benchmarking in the quest for orthologs. Nat Methods 13(5):425–430PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117(1):5–16PubMedCrossRefGoogle Scholar
  92. 92.
    Mocarski ES (2007) Comparative analysis of herpesvirus-common proteins. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis, chap 4. Cambridge University Press, CambridgeGoogle Scholar
  93. 93.
    Iranzo J, Krupovic M, Koonin EV (2016) The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 7(4):e00978–16Google Scholar
  94. 94.
    Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30(11):1072PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Brandman R, Brandman Y, Pande VS (2012) Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. PLoS ONE 7(1):e30022PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Avila-Herrera A, Pollard KS (2015) Coevolutionary analyses require phylogenetically deep alignments and better null models to accurately detect inter-protein contacts within and between species. BMC Bioinf 16(1):268Google Scholar
  97. 97.
    de Juan D, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat Rev Genet 14(4):249–261PubMedCrossRefGoogle Scholar
  98. 98.
    Eng CLP, Tong JC, Tan TW (2014) Predicting host tropism of influenza A virus proteins using random forest. BMC Med Genomics 7(Suppl 3):S1PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R (2007) Bioinformatics prediction of HIV coreceptor usage. Nature Biotechnol 25(12):1407–1410PubMedCrossRefGoogle Scholar
  100. 100.
    Riemenschneider M, Cashin KY, Budeus B, Sierra S, Shirvani E, Bayanolhagh S, Kaiser R, Gorry PR, Heider D (2016) Genotypic prediction of co-receptor tropism of HIV-1 subtypes A and C. Sci Rep 6:1–9Google Scholar
  101. 101.
    Sanchez C, Lachaize C, Janody F, Bellon B, Röder L, Euzenat J, Rechenmann F, Jacq B (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Res 27(1):89–94PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Barabási A-L (2009) Scale-free networks: a decade and beyond. Science 325(5939):412–413PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:387–382PubMedCrossRefGoogle Scholar
  105. 105.
    Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6): 423–435PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ivanov AA, Khuri FR, Fu H (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 34(7): 393–400PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458(7240):914–918PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4):767–782PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási A-L (2015) Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224)Google Scholar
  110. 110.
    Zheng S, Tansey WP, Hiebert SW, Zhao Z (2011) Integrative network analysis identifies key genes and pathways in the progression of Hepatitis C virus induced hepatocellular carcinoma. BMC Med Genet 4(1):62Google Scholar
  111. 111.
    Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4(2):e32PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    IDG Knowledge Management Center (2016) Unexplored opportunities in the druggable genome. Nat Rev Drug DiscovGoogle Scholar
  113. 113.
    Wuchty S, Siwo G, Ferdig MT (2010) Viral organization of human proteins. PLoS ONE 5(8):e11796PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Murali TM, Dyer MD, Badger D, Tyler BM, Katze MG (2011) Network-based prediction and analysis of HIV dependency factors. PLoS Comput Biol 7(9):e1002164PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Valente TW, Coronges K, Lakon C, Costenbader E (2008) How correlated are network centrality measures? Connections 28(1): 16–26PubMedGoogle Scholar
  116. 116.
    Brohée S, van Helden J (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinf 7:488CrossRefGoogle Scholar
  117. 117.
    Gaballa A, Newton GL, Antelmann H, Parsonage D, Upton H, Rawat M, Claiborne A, Fahey RC, Helmann JD (2010) Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci USA 107(14):6482–6486PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Novo Nordisk Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations