In Vivo Two-Photon Imaging of the Olfactory System in Insects

  • Marco Paoli
  • Albrecht HaaseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1820)


This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with some additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser-scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, followed by a short description of pioneering applications of this imaging modality.

Key words

Two-photon microscopy Calcium imaging Olfaction Insects Honeybee Drosophila Antennal lobe 


  1. 1.
    Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. CrossRefPubMedGoogle Scholar
  2. 2.
    Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. CrossRefPubMedGoogle Scholar
  3. 3.
    Lieke EE (1993) Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees. Eur J Neurosci 5:49–55. CrossRefPubMedGoogle Scholar
  4. 4.
    Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288. CrossRefGoogle Scholar
  5. 5.
    Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478. CrossRefPubMedGoogle Scholar
  6. 6.
    Wang JW, Wong AM, Flores J et al (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282CrossRefPubMedGoogle Scholar
  7. 7.
    Haase A, Rigosi E, Trona F et al (2010) In-vivo two-photon imaging of the honey bee antennal lobe. Biomed Opt Express 2:131–138. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moreaux L, Laurent G (2007) Estimating firing rates from calcium signals in locust projection neurons in vivo. Front Neural Circuits 1:2. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruchty M, Helmchen F, Wehner R, Kleineidam CJ (2010) Representation of thermal information in the antennal lobe of leaf-cutting ants. Front Behav Neurosci 4:174. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brandstaetter AS, Kleineidam CJ (2011) Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J Neurophysiol 106:2437–2449. CrossRefPubMedGoogle Scholar
  11. 11.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. CrossRefPubMedGoogle Scholar
  12. 12.
    Duemani Reddy G, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11:713–720. CrossRefPubMedGoogle Scholar
  13. 13.
    Maurer C, Jesacher A, Bernet S, Ritsch-Marte M (2011) What spatial light modulators can do for optical microscopy. Laser Photon Rev 5:81–101. CrossRefGoogle Scholar
  14. 14.
    Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zochowski M, Wachowiak M, Falk CX et al (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21CrossRefPubMedGoogle Scholar
  16. 16.
    Yan P, Acker CD, Zhou W-LW-L et al (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci 109:1–6. CrossRefGoogle Scholar
  17. 17.
    Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125CrossRefPubMedGoogle Scholar
  18. 18.
    Paredes RM, Etzler JC, Watts LT et al (2008) Chemical calcium indicators. Methods 46:143–151. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mütze J, Iyer V, MacKlin JJ et al (2012) Excitation spectra and brightness optimization of two-photon excited probes. Biophys J 102:934–944. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu C, Zipfel WR, Shear JB et al (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 93:10763CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Galizia CG, Joerges J, Küttner A et al (1997) A semi-in-vivo preparation for optical recording of the insect brain. J Neurosci Methods 76:61–69. CrossRefPubMedGoogle Scholar
  22. 22.
    Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117CrossRefPubMedGoogle Scholar
  23. 23.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440PubMedGoogle Scholar
  24. 24.
    Franke T (2009) In vivo 2-photon calcium imaging of olfactory interneurons in the honeybee antennal lobe. Dissertation, Freie Universität, BerlinGoogle Scholar
  25. 25.
    Haase A (2011) Simultaneous morphological and functional imaging of the honeybee’s brain by two-photon microscopy. Nuovo Cim C 34:1–10. CrossRefGoogle Scholar
  26. 26.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J Cell Physiol 59:223–239. CrossRefGoogle Scholar
  27. 27.
    Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  28. 28.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905. CrossRefPubMedGoogle Scholar
  29. 29.
    Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741. CrossRefPubMedGoogle Scholar
  32. 32.
    Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318CrossRefPubMedGoogle Scholar
  33. 33.
    Webster N, Jin JR, Green S et al (1988) The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52:169–178CrossRefPubMedGoogle Scholar
  34. 34.
    Reiff DF (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411. CrossRefPubMedGoogle Scholar
  36. 36.
    Jin L, Han Z, Platisa J et al (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–785. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Murata Y, Iwasaki H, Sasaki M et al (2005) Phosphoinositide phosphatase activity couple to an intrinsic voltage sensor. Nature 435:1239–1243CrossRefPubMedGoogle Scholar
  38. 38.
    Cao G, Platisa J, Pieribone VA et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. CrossRefPubMedGoogle Scholar
  39. 39.
    Strauch M, Lüdke A, Münch D et al (2014) More than apples and oranges - detecting cancer with a fruit fly’s antenna. Sci Rep 4:1–9. CrossRefGoogle Scholar
  40. 40.
    Szyszka P, Demmler C, Oemisch M et al (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31:7229–7239. CrossRefPubMedGoogle Scholar
  41. 41.
    Paoli M, Andrione M, Haase A (2017) Imaging techniques in insects. In: Rogers LJ, Vallortigara G (eds) Lateralized brain functions: methods in human and non-human species. Springer, New York, NY, pp 471–519CrossRefGoogle Scholar
  42. 42.
    Paoli M, Anesi A, Antolini R et al (2016) Differential odour coding of isotopomers in the honeybee brain. Sci Rep 6:21893CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Raiser G, Galizia CG, Szyszka P (2017) A high-bandwidth dual-channel olfactory stimulator for studying temporal sensitivity of olfactory processing. Chem Senses 42:141–151. CrossRefPubMedGoogle Scholar
  44. 44.
    Galizia CG, Nägler K, Hölldobler B, Menzel R (1998) Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur J Neurosci 10:2964–2974. CrossRefPubMedGoogle Scholar
  45. 45.
    Galizia GC, Vetter RS (2004) Methods in insect sensory neuroscience. CRC press, Boca Raton, FLGoogle Scholar
  46. 46.
    Rigosi E, Frasnelli E, Vinegoni C et al (2011) Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: a morphological and behavioural study. Behav Brain Res 221:290–294. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stökl J, Strutz A, Dafni A et al (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852. CrossRefPubMedGoogle Scholar
  48. 48.
    Silbering AF, Bell R, Galizia CG, Benton R (2012) Calcium imaging of odor-evoked responses in the Drosophila antennal lobe. J Vis Exp:1–10.
  49. 49.
    Strauch M, Rein J, Lutz C, Galizia CG (2013) Signal extraction from movies of honeybee brain activity: the ImageBee plugin for KNIME. BMC Bioinformatics 14:S4. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rigosi E, Haase A, Rath L et al (2015) Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain. Proc R Soc B Biol Sci 282:20142571–20142571. CrossRefGoogle Scholar
  51. 51.
    Paoli M, Weisz N, Antolini R, Haase A (2016) Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe. Eur J Neurosci 44:2387–2395. CrossRefPubMedGoogle Scholar
  52. 52.
    Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 190:21–38. CrossRefGoogle Scholar
  53. 53.
    Wacker M, Witte H (2013) Time-frequency techniques in biomedical signal analysis. Methods Inf Med 52:279–296. CrossRefPubMedGoogle Scholar
  54. 54.
    Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895. CrossRefPubMedGoogle Scholar
  55. 55.
    Grabe V, Strutz A, Baschwitz A et al (2015) Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J Comp Neurol 523:530–544. CrossRefPubMedGoogle Scholar
  56. 56.
    Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol Chapter 21:Unit 21.4.
  57. 57.
    Soboleski MR, Oaks J, Halford WP (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19:440–442. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Horsfield AP, Haase A, Turin L (2017) Molecular recognition in olfaction. Adv Phys 2(3):937. CrossRefGoogle Scholar
  59. 59.
    Paoli M, Münch D, Haase A et al (2017) Minute impurities contribute significantly to olfactory receptor ligand studies: tales from testing the vibration theory. eNeuro 4:ENEURO.0070-17.2017. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Andrione M, Vallortigara G, Antolini R, Haase A (2016) Neonicotinoid-induced impairment of odour coding in the honeybee. Sci Rep 6:38110. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Frasnelli E, Haase A, Rigosi E et al (2014) The bee as a model to investigate brain and behavioural asymmetries. Insects 5:120–138. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Andrione M, Timberlake BF, Vallortigara G et al (2017) Morpho-functional experience-dependent plasticity in the honeybee brain. Learn Mem 24:622CrossRefPubMedGoogle Scholar
  63. 63.
    Ng M, Roorda RD, Lima SQ et al (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474. CrossRefPubMedGoogle Scholar
  64. 64.
    Wang Y, Guo H, Pologruto TA et al (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514. CrossRefPubMedGoogle Scholar
  65. 65.
    Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132:3631–3642. CrossRefPubMedGoogle Scholar
  66. 66.
    Rabinovich D, Mayseless O, Schuldiner O (2015) Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 9:327. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pech U, Revelo NH, Seitz KJ et al (2015) Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 10:2083–2095. CrossRefPubMedGoogle Scholar
  68. 68.
    Sachse S, Rueckert E, Keller A et al (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850. CrossRefPubMedGoogle Scholar
  69. 69.
    Fahrni CJ (2009) Fluorescent probes for two-photon excitation microscopy. Springer, New York, NY, pp 249–269Google Scholar
  70. 70.
    Chen H, Wang H, Slipchenko MN et al (2009) A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express 17:1282–1290CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Driscoll JD, Shih AY, Iyengar S et al (2011) Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J Neurophysiol 105:3106–3113. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ouzounov DG, Wang T, Wang M et al (2017) In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14:388–390. CrossRefPubMedGoogle Scholar
  73. 73.
    Tao X, Lin H-H, Lam T et al (2017) Transcutical imaging with cellular and subcellular resolution. Biomed Opt Express 8:1277–1289. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Xu C, Wise FW (2013) Recent advances in fibre lasers for nonlinear microscopy. Nat Photonics 7:875–882. CrossRefGoogle Scholar
  75. 75.
    Haase A, Rigosi E, Frasnelli E et al (2011) A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. Eur Biophys J 40:1247–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bestvater F, Spiess E, Stobrawa G et al (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115. CrossRefPubMedGoogle Scholar
  77. 77.
    M a A, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Optics 37:7352–7356.
  78. 78.
    Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Fisher JAN, Salzberg BM, Yodh AG (2005) Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. Methods 148:94–102. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Department of PhysicsUniversity of TrentoPovoItaly
  3. 3.Center for Mind/Brain SciencesUniversity of TrentoTrentoItaly

Personalised recommendations