Advertisement

In Vivo Electrophysiological Recordings of Olfactory Receptor Neuron Units and Electro-olfactograms in Anesthetized Rats

  • Patricia Duchamp-Viret
  • Michel Chaput
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1820)

Abstract

In vivo recordings of single olfactory receptor neurons and electro-olfactograms (EOG, field potentials from the olfactory mucosa) provide insights into the olfactory processing properties of the olfactory peripheral stage. Because the olfactory receptor neurons are very small electrical generators, it is not easy to unitarily record them in amphibians, reptilians, and fishes. In mammals such recordings are even more difficult to obtain: primarily due to the anatomical configuration in complex turbinates of the olfactory mucosa and its propensity to hemorrhage during surgery; secondarily due to the fact that olfactory receptor neurons are held in closely packed clusters in the olfactory mucosa and are difficult to isolate, from the electrophysiological recording point of view. Here we describe the material and methods we used in vivo, in rats—occasionally, also tested in mice—to get simultaneously receptor neuron single and electro-olfactogram recordings, from septal region or the endoturbinate II, in freely breathing or tracheotomized anesthetized animals. Recording EOG in parallel with receptor neuron units provide, by reflecting the population response to the olfactory stimulus, the continuous assurance of the good physiological state and reactivity of the olfactory epithelium. This configuration will ensure that when a single ORN does not respond to a stimulus it resulted from its qualitative selectivity and not from the olfactory mucosa damaged status.

Key words

Olfactory receptor neurons Electro-olfactograms (EOG) Single unit electrophysiological recordings In vivo anesthetized animals 

References

  1. 1.
    Duchamp-Viret P, Duchamp A, Vigouroux M (1989) Amplifying role of convergence in olfactory system a comparative study of receptor cell and second order neuron sensitivities. J Neurophysiol 61:1085–1094CrossRefPubMedGoogle Scholar
  2. 2.
    Duchamp-Viret P, Duchamp A, Sicard G (1990) Olfactory discrimination over a wide concentration range comparison of receptor cell and bulb neuron abilities. Brain Res 517:256–262CrossRefPubMedGoogle Scholar
  3. 3.
    Duchamp-Viret P, Duchamp A (1997) Odor processing in the frog olfactory system. Prog Neurobiol 53:561–602CrossRefPubMedGoogle Scholar
  4. 4.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors–a molecular basis for odor recognition. Cell 65:175–187CrossRefGoogle Scholar
  5. 5.
    Ngai J, Dowling MM, Buck L, Axel R, Chess A (1993) The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666CrossRefPubMedGoogle Scholar
  6. 6.
    Kishimoto J, Cox H, Keverne EB, Emson PC (1994) Cellular localization of putative odorant receptor mRNAs in olfactory and chemosensory neurons: a non radioactive in situ hybridization study. Mol Brain Res 23:33–39CrossRefPubMedGoogle Scholar
  7. 7.
    Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834CrossRefPubMedGoogle Scholar
  8. 8.
    Serizawa S, Ishii T, Nakatani H, Tsuboi A, Nagawa F, Asano M, Sudo K, Sakagami J, Sakano H, Ijiri T, Matsuda Y, Suzuki M, Yamamori T, Iwakura Y, Sakano H (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3:687–693CrossRefPubMedGoogle Scholar
  9. 9.
    Serizawa S, Miyamichi K, Sakano H (2004) One neuron-one receptor rule in the mouse olfactory system. Trends Genet 20:648–653CrossRefPubMedGoogle Scholar
  10. 10.
    Buck L (1993) Identification and analysis of a multigene family encoding odorant receptors–implications for mechanisms underlying olfactory information processing. Chem Senses 18:203–208CrossRefGoogle Scholar
  11. 11.
    Zhao HQ, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242CrossRefPubMedGoogle Scholar
  12. 12.
    Duchamp-Viret P, Chaput MA, Duchamp A (1999) Odor response properties of rat olfactory receptor neurons. Science 284:2171–2174CrossRefPubMedGoogle Scholar
  13. 13.
    Duchamp-Viret P, Duchamp A, Chaput MA (2003) Single olfactory sensory neurons simultaneously integrate the components of an odor mixture. Eur J Neurosci 18:2690–2696CrossRefPubMedGoogle Scholar
  14. 14.
    Duchamp-Viret P, Kostal L, Chaput M, Lansky P, Rospars JP (2005) Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J Neurobiol 65:97–114CrossRefPubMedGoogle Scholar
  15. 15.
    Chaput MA, El Mountassir F, Atanasova B, Thomas-Danguin T, Le Bon AM, Perrut A, Ferry B, Duchamp-Viret P (2012) Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures. Eur J Neurosci 35:584–597CrossRefPubMedGoogle Scholar
  16. 16.
    Rospars JP, Lansky P, Chaput M, Duchamp-Viret P (2008) Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. J Neurosci 28:2659–2666CrossRefPubMedGoogle Scholar
  17. 17.
    Duchamp-Viret P, Duchamp A, Chaput MA (2000) Peripheral odor coding in the rat and frog: quality and intensity specification. J Neurosci 20:2383–2390CrossRefPubMedGoogle Scholar
  18. 18.
    Gesteland RC, Howland B, Lettvin JY (1959) WH comments on microelectrodes. In: Proceedings of the IRE, vol 47, pp 1856–1862Google Scholar
  19. 19.
    Vigouroux M, Viret P, Duchamp A (1988) A wide concentration range olfactometer for delivery of short reproducible odor pulses. J Neurosci Methods 24:57–63CrossRefPubMedGoogle Scholar
  20. 20.
    Adamek A, Gesteland RC (1984) Saline filled pipette that records olfactory receptor cell activity. Chem Senses 9:121–126CrossRefGoogle Scholar
  21. 21.
    Ferry B, Gervasoni D, Vogt C (2014) Stereotaxic neurosurgery in laboratory rodent. In: Handook on best practices. Springer Verlag Intl, New-YorkGoogle Scholar
  22. 22.
    Chaput MA, Duchamp-Viret P, Duchamp A (2001) Recordings from olfactory receptor neurons in the rat in vivo. In: Methods in chemosensory research. CRC press, Boca Raton London New-york Washington DC, pp 79–90Google Scholar
  23. 23.
    Laing DG Panhuber H, Slotnick BM (1989) Odor masking in the rat. Physiol Behav 45:689–694CrossRefPubMedGoogle Scholar
  24. 24.
    Laing DG, Panhuber H, Willcox ME, Pittman EA (1984) Quality and intensity of binary odor mixtures. Physiol Behav 33:309–319CrossRefPubMedGoogle Scholar
  25. 25.
    Laska M, Hudson R (1993) Discriminating parts from the whole - determinants of odor mixture perception in squirrel monkeys Saimiri-sciureus. J Comp Physiol A 173:249–256CrossRefPubMedGoogle Scholar
  26. 26.
    Cometto-Muniz JE, Cain WS, Abraham MH, Gola JM (1999) Chemosensory detectability of 1-butanol and 2-heptanone singly and in binary mixtures. Physiol Behav 67:269–276CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Recherche en Neurosciences de Lyon (CRNL)UMR CNRS 5292, INSERM U1020, Université Lyon1, 50 avenue Tony GarnierLyon Cedex7France

Personalised recommendations