Micropipette Aspiration of Oocytes to Assess Cortical Tension

  • Janice P. EvansEmail author
  • Douglas N. Robinson
Part of the Methods in Molecular Biology book series (MIMB, volume 1818)


Just as it is important to understand the cell biology of signaling pathways, it is valuable also to understand mechanical forces in cells. The field of mechanobiology has a rich history, including study of cellular mechanics during mitosis and meiosis in echinoderm oocytes and zygotes dating back to the 1930s. This chapter addresses the use of micropipette aspiration (MPA) to assess cellular mechanics, specifically cortical tension, in mammalian oocytes.

Key words

Cellular mechanics Signaling pathways Mitosis Meiosis 



Our work on cortical tension in oocytes has been supported by Grant #HD074773 from the NIH, with related work in the Robinson lab supported by Grant #GM066817 and in the Evans lab by Grant # HD090624. We are especially grateful to Dr. Stephanie Larson and Dr. Hyo Lee, who led the way in the development of this methodology of use with oocytes, with assistance from Dr. Yee-Seir Kee.


  1. 1.
    Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 21:3182–3192CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kryzak CA, Moraine MM, Kyle DD, Lee HJ, Cubeñas-Potts C, Robinson DN, Evans JP (2013) Prophase I mouse oocytes are deficient in the ability to respond to fertilization by decreasing membrane receptivity to sperm and establishing a membrane block to polyspermy. Biol Reprod 89:44CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Derganc J, Božic B, Sventina S, Žekš B (2000) Stability analysis of micropipette aspriation of neutrophils. Biophys J 79:153–162CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chaigne A, Campillo C, Gov NS, Voituriez R, Azoury J, Umaña-Diaz C, Almonacid M, Queguiner I, Nassoy P, Sykes C, Verlhac M-H, Terret M-E (2013) A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat Cell Biol 15:958–966CrossRefPubMedGoogle Scholar
  6. 6.
    Chaigne A, Campillo C, Gov NS, Voituriez R, Sykes C, Verlhac MH, Terret ME (2015) A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun 6:6027CrossRefPubMedGoogle Scholar
  7. 7.
    Yanez LZ, Han J, Behr BB, Pera RAR, Camarillo DB (2016) Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat Commun 7:10809CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971–975CrossRefPubMedGoogle Scholar
  9. 9.
    Cole KS (1932) Surface forces of the Arbacia egg. J Cell Comp Physiol 1:1–9CrossRefGoogle Scholar
  10. 10.
    Cole KS, Michaelis EM (1932) Surface forces of fertilized Arbacia eggs. J Cell Comp Physiol 2:121–126CrossRefGoogle Scholar
  11. 11.
    Mitchison JM, Swann MM (1954) The mechanical properties of the cell surface: II. The unfertilized sea-urchin egg. J Exp Biol 31:461–472Google Scholar
  12. 12.
    Mitchison JM, Swann MM (1955) The mechanical properties of the cell surface: III. The sea-urchin egg from fertilization to cleavage. J Exp Biol 32:734–750Google Scholar
  13. 13.
    Hiramoto Y (1976) Mechanical properties of starfish oocytes. Develop Growth Differ 18:205–209CrossRefGoogle Scholar
  14. 14.
    Yoneda M (1976) Temperature-dependence of the tension at the surface of sea urchin eggs. Develop Growth Differ 18:387–389CrossRefGoogle Scholar
  15. 15.
    Ikeda M, Nemoto S, Yoneda M (1976) Periodic changes in the content of protein bound sulfhydryl groups and tension at the surface of starfish oocyts in correlation with the meiotic division cycle. Develop Growth Differ 18:221–225CrossRefGoogle Scholar
  16. 16.
    Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, Girard KD, Divi S, Iglesias PA, Kuo SC, Robinson DN (2008) Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol 18:471–480CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Luo T, Mohan K, Iglesias PA, Robinson DN (2013) Molecular mechanisms of cellular mechanosensing. Nat Mater 12:1064–1071CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Evans JP, Robinson DN (2011) The spatial and mechanical challenges of female meiosis. Mol Reprod Dev 78:769–777CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Girard KD, Kuo SC, Robinson DN (2006) Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales. Proc Natl Acad Sci U S A 103:2103–2108CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Girard KD, Chaney C, Delannoy M, Kuo SC, Robinson DN (2004) Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. EMBO J 23:1536–1546CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reichl EM, Effler JC, Robinson DN (2005) The stress and strain of cytokinesis. Trends Cell Biol 15:200–206CrossRefPubMedGoogle Scholar
  22. 22.
    Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reichl EM, Robinson DN (2007) Putting the brakes on cytokinesis with alpha-actinin. Dev Cell 13:460–462CrossRefPubMedGoogle Scholar
  24. 24.
    Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783CrossRefPubMedGoogle Scholar
  25. 25.
    Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, Robinson DN, Overholtzer M (2014) Competition between human cells by entosis. Cell Res 24:1299–1310CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Poirier CC, Ng WP, Robinson DN, Iglesias PA (2012) Deconvolution of the cellular force-generating subsystems that govern cytokinesis furrow ingression. PLoS Comput Biol 8:e1002467CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kee YS, Robinson DN (2013) Micropipette aspiration for studying cellular mechanosensory responses and mechanics. Methods Mol Biol 983:367–382CrossRefPubMedGoogle Scholar
  28. 28.
    Whitten WK (1971) Nutrient requirements for the culture of preimplantation embryos in vitro. Adv Biosci 6:129–139Google Scholar
  29. 29.
    Cho WK, Stern S, Biggers JD (1974) Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool 187:383–386CrossRefPubMedGoogle Scholar
  30. 30.
    Evans JP, Schultz RM, Kopf GS (1995) Identification and localization of integrin subunits in oocytes and eggs of the mouse. Mol Reprod Dev 40:211–220CrossRefPubMedGoogle Scholar
  31. 31.
    Evans JP, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse eggs: evidence for adhesive activity via an egg β1 integrin-mediated interaction. Dev Biol 187:79–93CrossRefPubMedGoogle Scholar
  32. 32.
    Conover JC, Gwatkin RBL (1988) Pre-loading of mouse oocytes with DNA-specific fluorochrome (Hoechst 33342) permits rapid detection of sperm-oocyte fusion. J Reprod Fert 82:681–690CrossRefGoogle Scholar
  33. 33.
    McGinnis LA, Lee HJ, Robinson DN, Evans JP (2015) MAPK3/1 (ERK1/2) and myosin light chain kinase in mammalian eggs affect myosin-II function and regulate the metaphase II state in a calcium- and zinc-dependent manner. Biol Reprod 92:146CrossRefPubMedGoogle Scholar
  34. 34.
    Madgwick S, Hansen DV, Levasseur M, Jackson PK, Jones KT (2006) Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. J Cell Biol 174:791–801CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yun Y, Lane SIR, Jones KT (2014) Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes. Development 141:199–208CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hochmuth RM (2000) Micropipet aspiration of living cells. J Biomech 33:15–22CrossRefPubMedGoogle Scholar
  37. 37.
    Chaigne A, Campillo C, Voituriez R, Gov NS, Sykes C, Verlhac M-H, Terret M-E (2016) F-actin mechanics control spindle centring in the mouse zygote. Nat Commun 7Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Cell Biology, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Pharmacology and Molecular Sciences, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations