Advertisement

Monitoring Microtubule Dynamics in the Mouse Egg Using Photoactivatable-GFP-Tubulin

  • Greg FitzHarrisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1818)

Abstract

Fluorescence photoactivation provides a strategy for monitoring protein kinetics within living cells. In particular, fluorescence photoactivation of a subpopulation of microtubule subunits within the spindle using photoactivatable fluorescent tubulin constructs has proven useful for assessing a variety of features of spindle microtubule dynamics, including poleward microtubule movement, microtubule depolymerization, and microtubule turnover, in various cellular settings. The current chapter describes a method for monitoring microtubule dynamics within the mouse egg spindle by photoactivation of photoactivatable-GFP-tubulin, followed by time-lapse confocal imaging.

Key words

Mouse oocyte Photoactivatable GFP Microtubule dynamics 

References

  1. 1.
    Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl:S7–S14Google Scholar
  2. 2.
    Matsuda T, Nagai T (2014) Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins. Microscopy (Oxf) 63:403–408CrossRefGoogle Scholar
  3. 3.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877CrossRefPubMedGoogle Scholar
  4. 4.
    Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou XX, Lin MZ (2013) Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr Opin Chem Biol 17:682–690CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Compton DA (2000) Spindle assembly in animal cells. Annu Rev Biochem 69:95–114CrossRefPubMedGoogle Scholar
  7. 7.
    Heald R, Khodjakov A (2015) Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 211:1103–1111CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131:721–734CrossRefPubMedGoogle Scholar
  9. 9.
    Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109:637–652CrossRefPubMedGoogle Scholar
  10. 10.
    Rogers GC, Rogers SL, Sharp DJ (2005) Spindle microtubules in flux. J Cell Sci 118:1105–1116CrossRefPubMedGoogle Scholar
  11. 11.
    Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35CrossRefPubMedGoogle Scholar
  12. 12.
    Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fitzharris G (2009) A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136:2111–2119CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    FitzHarris G (2012) Anaphase B precedes anaphase a in the mouse egg. Curr Biol 22:437–444CrossRefPubMedGoogle Scholar
  15. 15.
    Nakagawa S, FitzHarris G (2016) Quantitative microinjection of Morpholino antisense oligonucleotides into mouse oocytes to examine gene function in meiosis-I. Methods Mol Biol 1457:217–230CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J (2017) Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 216(10):3133–3143CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dumollard R et al (2004) Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131:3057–3067CrossRefPubMedGoogle Scholar
  18. 18.
    Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126(Pt 13):2955–2964CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OBGYN, Centre Recherche CHUMUniversité de MontréalMontrealCanada

Personalised recommendations