Ovine Model of Ischemic Mitral Regurgitation

  • Dae-Hee Kim
  • Brittan Morris
  • J. Luis Guerrero
  • Suzanne M. Sullivan
  • Judy Hung
  • Robert A. LevineEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1816)


Ischemic mitral regurgitation (IMR) is a common complication of ischemic heart disease that doubles mortality after myocardial infarction and is a major driving factor increasing heart failure. IMR is caused by left ventricular (LV) remodeling which displaces the papillary muscles that tether the mitral valve leaflets and restrict their closure. IMR frequently recurs even after surgical treatment. Failed repair associates with lack of reduction or increase in LV remodeling, and increased heart failure and related readmissions. Understanding mechanistic and molecular mechanisms of IMR has largely attributed to the development of large animal models. Newly developed therapeutic interventions targeted to the primary causes can also be tested in these models. The sheep is one of the most suitable models for the development of IMR. In this chapter, we describe the protocols for inducing IMR in sheep using surgical ligation of obtuse marginal branches. After successful posterior myocardial infarction involving posterior papillary muscle, animals develop significant mitral regurgitation around 2 months after the surgery.

Key words

Mitral regurgitation Myocardial infarction Sheep Echocardiography Tethering Papillary muscle 



This study was supported in part by NIH grants R01 HL128099 and HL141917, and by support from the Ellison Foundation, Boston, MA.

Supplementary material

Movie 1a

Movie clips of baseline (normal) short axis images (a, b) and posterior infarction with PM involvement (c, d, and e). The PM does not contract; not moving toward the center in short axis (c, d) and the base in long axis (e) (MP4 520 kb)

Movie 1b

Movie clips of baseline (normal) short axis images (a, b) and posterior infarction with PM involvement (c, d, and e). The PM does not contract; not moving toward the center in short axis (c, d) and the base in long axis (e) (MP4 537 kb)

Movie 1c

Movie clips of baseline (normal) short axis images (a, b) and posterior infarction with PM involvement (c, d, and e). The PM does not contract; not moving toward the center in short axis (c, d) and the base in long axis (e) (MP4 550 kb)

Movie 1d

Movie clips of baseline (normal) short axis images (a, b) and posterior infarction with PM involvement (c, d, and e). The PM does not contract; not moving toward the center in short axis (c, d) and the base in long axis (e) (MP4 541 kb)

Movie 1e

Movie clips of baseline (normal) short axis images (a, b) and posterior infarction with PM involvement (c, d, and e). The PM does not contract; not moving toward the center in short axis (c, d) and the base in long axis (e) (MP4 714 kb)


  1. 1.
    Grigioni F, Detaint D, Avierinos JF, Scott C, Tajik J, Enriquez-Sarano M (2005) Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol 45(2):260–267CrossRefPubMedGoogle Scholar
  2. 2.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103(13):1759–1764CrossRefPubMedGoogle Scholar
  3. 3.
    Lamas GA, Mitchell GF, Flaker GC, Smith SC Jr, Gersh BJ, Basta L, Moye L, Braunwald E, Pfeffer MA (1997) Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and ventricular enlargement investigators. Circulation 96(3):827–833CrossRefPubMedGoogle Scholar
  4. 4.
    Birnbaum Y, Chamoun AJ, Conti VR, Uretsky BF (2002) Mitral regurgitation following acute myocardial infarction. Coron Artery Dis 13(6):337–344CrossRefPubMedGoogle Scholar
  5. 5.
    Trichon BH, Felker GM, Shaw LK, Cabell CH, O'Connor CM (2003) Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol 91(5):538–543CrossRefPubMedGoogle Scholar
  6. 6.
    Popovic ZB, Martin M, Fukamachi K, Inoue M, Kwan J, Doi K, Qin JX, Shiota T, Garcia MJ, McCarthy PM, Thomas JD (2005) Mitral annulus size links ventricular dilatation to functional mitral regurgitation. J Am Soc Echocardiogr 18(9):959–963CrossRefPubMedGoogle Scholar
  7. 7.
    Tibayan FA, Rodriguez F, Langer F, Zasio MK, Bailey L, Liang D, Daughters GT, Ingels NB Jr, Miller DC (2003) Annular remodeling in chronic ischemic mitral regurgitation: ring selection implications. Ann Thorac Surg 76(5):1549–1554. discussion 1554-1545CrossRefPubMedGoogle Scholar
  8. 8.
    Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ (2000) Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation 102(12):1400–1406CrossRefPubMedGoogle Scholar
  9. 9.
    Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, Vlahakes GJ, Levine RA (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96(6):1999–2008CrossRefPubMedGoogle Scholar
  10. 10.
    Kono T, Sabbah HN, Rosman H, Alam M, Jafri S, Goldstein S (1992) Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol 20(7):1594–1598CrossRefPubMedGoogle Scholar
  11. 11.
    Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Hjortnaes J, Beaudoin J, Szymanski C, Bartko PE, Seybolt MM, Handschumacher MD, Sullivan S, Garcia ML, Mauskapf A, Titus JS, Wylie-Sears J, Irvin WS, Chaput M, Messas E, Hagege AA, Carpentier A, Levine RA, Leducq Transatlantic Mitral N (2016) Myocardial infarction alters adaptation of the tethered mitral valve. J Am Coll Cardiol 67(3):275–287CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chaput M, Handschumacher MD, Tournoux F, Hua L, Guerrero JL, Vlahakes GJ, Levine RA (2008) Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118(8):845–852CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boltwood CM, Tei C, Wong M, Shah PM (1983) Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation 68(3):498–508CrossRefPubMedGoogle Scholar
  14. 14.
    Burch GE, De Pasquale NP, Phillips JH (1963) Clinical manifestations of papillary muscle dysfunction. Arch Intern Med 112:112–117CrossRefPubMedGoogle Scholar
  15. 15.
    Cochran RP, Kunzelman KS (1998) Effect of papillary muscle position on mitral valve function: relationship to homografts. Ann Thorac Surg 66(6 Suppl):S155–S161CrossRefPubMedGoogle Scholar
  16. 16.
    Gorman RC, McCaughan JS, Ratcliffe MB, Gupta KB, Streicher JT, Ferrari VA, St John-Sutton MG, Bogen DK, Edmunds LH Jr (1995) Pathogenesis of acute ischemic mitral regurgitation in three dimensions. J Thorac Cardiovasc Surg 109(4):684–693CrossRefPubMedGoogle Scholar
  17. 17.
    He S, Fontaine AA, Schwammenthal E, Yoganathan AP, Levine RA (1997) Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation 96(6):1826–1834CrossRefPubMedGoogle Scholar
  18. 18.
    Kaul S, Spotnitz WD, Glasheen WP, Touchstone DA (1991) Mechanism of ischemic mitral regurgitation. An experimental evaluation. Circulation 84(5):2167–2180CrossRefPubMedGoogle Scholar
  19. 19.
    Komeda M, Glasson JR, Bolger AF, Daughters GT 2nd, MacIsaac A, Oesterle SN, Ingels NB Jr, Miller DC (1997) Geometric determinants of ischemic mitral regurgitation. Circulation 96(9 Suppl):II-128–II-133Google Scholar
  20. 20.
    Kono T, Sabbah HN, Stein PD, Brymer JF, Khaja F (1991) Left ventricular shape as a determinant of functional mitral regurgitation in patients with severe heart failure secondary to either coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol 68(4):355–359CrossRefPubMedGoogle Scholar
  21. 21.
    Llaneras MR, Nance ML, Streicher JT, Lima JA, Savino JS, Bogen DK, Deac RF, Ratcliffe MB, Edmunds LH Jr (1994) Large animal model of ischemic mitral regurgitation. Ann Thorac Surg 57(2):432–439CrossRefPubMedGoogle Scholar
  22. 22.
    Llaneras MR, Nance ML, Streicher JT, Linden PL, Downing SW, Lima JA, Deac R, Edmunds LH Jr (1993) Pathogenesis of ischemic mitral insufficiency. J Thorac Cardiovasc Surg 105(3):439–442; discussion 442–433.PubMedGoogle Scholar
  23. 23.
    Mittal AK, Langston M Jr, Cohn KE, Selzer A, Kerth WJ (1971) Combined papillary muscle and left ventricular wall dysfunction as a cause of mitral regurgitation. An experimental study. Circulation 44(2):174–180CrossRefPubMedGoogle Scholar
  24. 24.
    Otsuji Y, Handschumacher MD, Liel-Cohen N, Tanabe H, Jiang L, Schwammenthal E, Guerrero JL, Nicholls LA, Vlahakes GJ, Levine RA (2001) Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation. J Am Coll Cardiol 37(2):641–648CrossRefPubMedGoogle Scholar
  25. 25.
    Godley RW, Wann LS, Rogers EW, Feigenbaum H, Weyman AE (1981) Incomplete mitral leaflet closure in patients with papillary muscle dysfunction. Circulation 63(3):565–571CrossRefPubMedGoogle Scholar
  26. 26.
    Levine RA, Schwammenthal E (2005) Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 112(5):745–758CrossRefPubMedGoogle Scholar
  27. 27.
    Calafiore AM, Gallina S, Di Mauro M, Gaeta F, Iaco AL, D'Alessandro S, Mazzei V, Di Giammarco G (2001) Mitral valve procedure in dilated cardiomyopathy: repair or replacement? Ann Thorac Surg 71(4):1146–1152. discussion 1152-1143CrossRefPubMedGoogle Scholar
  28. 28.
    Grossi EA, Goldberg JD, LaPietra A, Ye X, Zakow P, Sussman M, Delianides J, Culliford AT, Esposito RA, Ribakove GH, Galloway AC, Colvin SB (2001) Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications. J Thorac Cardiovasc Surg 122(6):1107–1124CrossRefPubMedGoogle Scholar
  29. 29.
    Hung J, Papakostas L, Tahta SA, Hardy BG, Bollen BA, Duran CM, Levine RA (2004) Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation 110(11 Suppl 1):II85–II90PubMedGoogle Scholar
  30. 30.
    Kuwahara E, Otsuji Y, Iguro Y, Ueno T, Zhu F, Mizukami N, Kubota K, Nakashiki K, Yuasa T, Yu B, Uemura T, Takasaki K, Miyata M, Hamasaki S, Kisanuki A, Levine RA, Sakata R, Tei C (2006) Mechanism of recurrent/persistent ischemic/functional mitral regurgitation in the chronic phase after surgical annuloplasty: importance of augmented posterior leaflet tethering. Circulation 114(1 Suppl):I529–I534PubMedGoogle Scholar
  31. 31.
    McGee EC, Gillinov AM, Blackstone EH, Rajeswaran J, Cohen G, Najam F, Shiota T, Sabik JF, Lytle BW, McCarthy PM, Cosgrove DM (2004) Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg 128(6):916–924CrossRefPubMedGoogle Scholar
  32. 32.
    Tahta SA, Oury JH, Maxwell JM, Hiro SP, Duran CM (2002) Outcome after mitral valve repair for functional ischemic mitral regurgitation. J Heart Valve Dis 11(1):11–18. discussion 18-19PubMedGoogle Scholar
  33. 33.
    Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, Smith PK, Hung JW, Blackstone EH, Puskas JD, Argenziano M, Gammie JS, Mack M, Ascheim DD, Bagiella E, Moquete EG, Ferguson TB, Horvath KA, Geller NL, Miller MA, Woo YJ, D'Alessandro DA, Ailawadi G, Dagenais F, Gardner TJ, O'Gara PT, Michler RE, Kron IL (2013) Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 370:23–32CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goldstein D, Moskowitz AJ, Gelijns AC, Ailawadi G, Parides MK, Perrault LP, Hung JW, Voisine P, Dagenais F, Gillinov AM, Thourani V, Argenziano M, Gammie JS, Mack M, Demers P, Atluri P, Rose EA, O'Sullivan K, Williams DL, Bagiella E, Michler RE, Weisel RD, Miller MA, Geller NL, Taddei-Peters WC, Smith PK, Moquete E, Overbey JR, Kron IL, O'Gara PT, Acker MA, CTSN (2015) Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med 374:344–353CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kron IL, Hung J, Overbey JR, Bouchard D, Gelijns AC, Moskowitz AJ, Voisine P, O’Gara PT, Argenziano M, Michler RE, Gillinov M, Puskas JD, Gammie JS, Mack MJ, Smith PK, Sai-Sudhakar C, Gardner TJ, Ailawadi G, Zeng X, O'Sullivan K, Parides MK, Swayze R, Thourani V, Rose EA, Perrault LP, Acker MA (2015) Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J Thorac Cardiovasc Surg 149(3):752–761.e751CrossRefPubMedGoogle Scholar
  36. 36.
    Kron IL, Perrault LP, Acker MA (2015) We need a better way to repair ischemic mitral regurgitation. J Thorac Cardiovasc Surg 150(2):428CrossRefPubMedGoogle Scholar
  37. 37.
    Vassileva CM, Boley T, Markwell S, Hazelrigg S (2011) Meta-analysis of short-term and long-term survival following repair versus replacement for ischemic mitral regurgitation. Eur J Cardiothorac Surg 39(3):295–303CrossRefPubMedGoogle Scholar
  38. 38.
    Scheuer J (1982) Effects of physical training on myocardial vascularity and perfusion. Circulation 66(3):491–495CrossRefPubMedGoogle Scholar
  39. 39.
    Milani-Nejad N, Janssen PM (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141(3):235–249CrossRefPubMedGoogle Scholar
  40. 40.
    Gorman JH 3rd, Gorman RC, Plappert T, Jackson BM, Hiramatsu Y, St John-Sutton MG, Edmunds LH Jr (1998) Infarct size and location determine development of mitral regurgitation in the sheep model. J Thorac Cardiovasc Surg 115(3):615–622CrossRefPubMedGoogle Scholar
  41. 41.
    Hutchison J, Rea P (2015) A comparative study of the morphology of mammalian chordae tendineae of the mitral and tricuspid valves. Vet Rec Open 2(2):e000150CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hill AJ, Iaizzo PA (2009) Comparative cardiac anatomy. In: Iaizzo PA (ed) Handbook of cardiac anatomy, physiology, and devices. Humana Press, Totowa, NJ, pp 87–108. Scholar
  43. 43.
    Olsson K, Hansson K, Hydbring E, von Walter LW, Häggström J (2001) A serial study of heart function during pregnancy, lactation and the dry period in dairy goats using echocardiography. Exp Physiol 86(1):93–99CrossRefPubMedGoogle Scholar
  44. 44.
    Vloumidi EI, Fthenakis GC (2017) Ultrasonographic examination of the heart in sheep. Small Rumin Res 152(Supplement C):119–127CrossRefGoogle Scholar
  45. 45.
    Bartko PE, Dal-Bianco JP, Guerrero JL, Beaudoin J, Szymanski C, Kim DH, Seybolt MM, Handschumacher MD, Sullivan S, Garcia ML, Titus JS, Wylie-Sears J, Irvin WS, Messas E, Hagege AA, Carpentier A, Aikawa E, Bischoff J, Levine RA, Leducq Transatlantic Mitral N (2017) Effect of losartan on mitral valve changes after myocardial infarction. J Am Coll Cardiol 70(10):1232–1244CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, Johnson B, Titus JS, Iwamoto Y, Wylie-Sears J, Levine RA, Carpentier A (2009) Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120(4):334–342CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poser H, Semplicini L, De Benedictis GM, Gerardi G, Contiero B, Maschietto N, Valerio E, Milanesi O, Semplicini A, Bernardini D (2013) Two-dimensional, M-mode and Doppler-derived echocardiographic parameters in sedated healthy growing female sheep. Lab Anim 47(3):194–202CrossRefPubMedGoogle Scholar
  48. 48.
    Locatelli P, Olea FD, De Lorenzi A, Salmo F, Vera Janavel GL, Hnatiuk AP, Guevara E, Crottogini AJ (2011) Reference values for echocardiographic parameters and indexes of left ventricular function in healthy, young adult sheep used in translational research: comparison with standardized values in humans. Int J Clin Exp Med 4(4):258–264PubMedPubMedCentralGoogle Scholar
  49. 49.
    Moses BL, Ross JN Jr (1987) M-mode echocardiographic values in sheep. Am J Vet Res 48(9):1313–1318PubMedGoogle Scholar
  50. 50.
    Becker AE (1991) Anatomy of the coronary arteries with resepct to chronic ischemic mitral regurgitation. In: Vetter HO, Hetzer R, Schmutzler H (eds) Ischemic mitral incompetence. Steinkopff, Heidelberg, pp 17–24. Scholar
  51. 51.
    Gorman JH 3rd, Jackson BM, Gorman RC, Kelley ST, Gikakis N, Edmunds LH Jr (1997) Papillary muscle discoordination rather than increased annular area facilitates mitral regurgitation after acute posterior myocardial infarction. Circulation 96(9 Suppl):II-124–II-127Google Scholar
  52. 52.
    Group EUCCS, Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, Maas AH, Kautzky-Willer A, Knappe-Wegner D, Kintscher U, Ladwig KH, Schenck-Gustafsson K, Stangl V (2016) Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J 37(1):24–34CrossRefGoogle Scholar
  53. 53.
    Ahlberg SE, Bateman MG, Eggen MD, Quill JL, Richardson ES, Iaizzo PA (2013) Animal models for cardiac valve research. In: Iaizzo PA, Bianco RW, Hill AJ, St. Louis JD (eds) Heart valves: from design to clinical implantation. Springer US, Boston, MA, pp 343–357. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dae-Hee Kim
    • 1
    • 2
    • 3
  • Brittan Morris
    • 4
  • J. Luis Guerrero
    • 4
  • Suzanne M. Sullivan
    • 4
  • Judy Hung
    • 3
  • Robert A. Levine
    • 3
    Email author
  1. 1.Cardiac Imaging Center, Asan Medical CenterCollege of Medicine, University of UlsanSeoulKorea
  2. 2.Division of Cardiology, Asan Medical CenterCollege of Medicine, University of UlsanSeoulKorea
  3. 3.Cardiac Ultrasound Laboratory, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  4. 4.Surgical Cardiovascular LaboratoryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations