Advertisement

Rat Model of Cardiotoxic Drug-Induced Cardiomyopathy

  • Takehiro Nakahara
  • Takashi Tanimoto
  • Artiom D. Petrov
  • Kiyotake Ishikawa
  • H. William Strauss
  • Jagat Narula
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1816)

Abstract

Cardiotoxicity from cancer drugs remains a clinical problem. To find reliable markers of cardiotoxicity, animal models were proposed and potential new diagnostic markers have been actively investigated using these models. Here we describe our protocols, using male Sprague-Dawley rats, for inducing cardiomyopathy by single injection of high-dose doxorubicin (5–10 mg/kg) or multiple injections (2–4 times) of low-dose doxorubicin (2.5 mg/kg) with combined single injection of trastuzumab (10 mg/kg). The cardiotoxicity is evaluated by imaging modalities (echocardiography and nuclear imaging), serum troponin levels, and histopathological analyses.

Key words

Doxorubicin Traszmab Cardiotoxicity Echocardiography Left ventricular ejection fraction Troponin 

Notes

Acknowledgments

TN was supported by Uehara Memorial Foundation and SNMMI Wagner-Torizuka Fellowship. TT was supported by Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad.

References

  1. 1.
    Zeng C, Wen W, Morgans AK, Pao W, Shu XO, Zheng W (2015) Disparities by race, age, and sex in the improvement of survival for major cancers: results from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) program in the United States, 1990 to 2010. JAMA Oncol 1(1):88–96. https://doi.org/10.1001/jamaoncol.2014.161CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lenneman CG, Sawyer DB (2016) Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res 118(6):1008–1020. https://doi.org/10.1161/circresaha.115.303633CrossRefPubMedGoogle Scholar
  3. 3.
    Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 9(1):e002661. https://doi.org/10.1161/circheartfailure.115.002661CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail 9(2):e002843. https://doi.org/10.1161/circheartfailure.115.002843CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakahara T, Petrov A, Tanimoto T, Chaudhry F, Narula N, Seshan SV, Mattis JA, Pak KY, Sahni G, Bhardwaj A, Sengupta PP, Tiersten A, Strauss HW, Narula J (2018) Molecular imaging of apoptosis in cancer therapy related cardiac dysfunction before LVEF reduction. JACC Cardiovasc Imaging 2018 Feb 14. pii: S1936-878X(18)30005-6. https://doi.org/10.1016/j.jcmg.2017.12.012
  6. 6.
    Razmaraii N, Babaei H, Mohajjel Nayebi A, Asadnasab G, Ashrafi Helan J, Azarmi Y (2016) Cardioprotective effect of phenytoin on doxorubicin-induced cardiac toxicity in a rat model. J Cardiovasc Pharmacol 67(3):237–245. https://doi.org/10.1097/fjc.0000000000000339CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang S, Meng T, Liu J, Zhang X, Zhang J (2015) Cardiac protective effects of dexrazoxane on animal cardiotoxicity model induced by anthracycline combined with trastuzumab is associated with upregulation of calpain-2. Medicine 94(4):e445. https://doi.org/10.1097/md.0000000000000445CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fernandez-Fernandez A, Carvajal DA, Lei T, McGoron AJ (2014) Chemotherapy-induced changes in cardiac capillary permeability measured by fluorescent multiple indicator dilution. Ann Biomed Eng 42(12):2405–2415. https://doi.org/10.1007/s10439-014-1110-9CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Salouege I, Ben Ali R, Ben Said D, Elkadri N, Kourda N, Lakhal M, Klouz A (2014) Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. J Cancer Res Ther 10(2):274–278. https://doi.org/10.4103/0973-1482.136557CrossRefPubMedGoogle Scholar
  10. 10.
    Hydock DS, Lien CY, Hayward R (2009) Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. J Cardiovasc Pharmacol Ther 14(1):59–67. https://doi.org/10.1177/1074248408329449CrossRefPubMedGoogle Scholar
  11. 11.
    Hydock DS, Lien CY, Schneider CM, Hayward R (2008) Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc 40(5):808–817. https://doi.org/10.1249/MSS.0b013e318163744aCrossRefPubMedGoogle Scholar
  12. 12.
    Hayward R, Hydock DS (2007) Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci 46(4):20–32PubMedGoogle Scholar
  13. 13.
    Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D (2007) Potentiation of Doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol 49(25):2457–2464. https://doi.org/10.1016/j.jacc.2007.02.060CrossRefPubMedGoogle Scholar
  14. 14.
    Yurekli Y, Unak P, Ertay T, Biber Z, Medine I, Teksoz S (2005) Radiopharmaceutical model using 99mTc-MIBI to evaluate amifostine protection against doxorubicin cardiotoxicity in rats. Ann Nucl Med 19(3):197–200CrossRefPubMedGoogle Scholar
  15. 15.
    Lim SC (2013) Interrelation between expression of ADAM 10 and MMP 9 and synthesis of peroxynitrite in doxorubicin induced cardiomyopathy. Biomol Ther 21(5):371–380. https://doi.org/10.4062/biomolther.2013.034CrossRefGoogle Scholar
  16. 16.
    Oliveira MS, Melo MB, Carvalho JL, Melo IM, Lavor MS, Gomes DA, de Goes AM, Melo MM (2013) Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther 5(2):52–57. https://doi.org/10.4172/1948-5956.1000184CrossRefPubMedGoogle Scholar
  17. 17.
    Hiona A, Lee AS, Nagendran J, Xie X, Connolly AJ, Robbins RC, Wu JC (2011) Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg 142(2):396–403. e393. https://doi.org/10.1016/j.jtcvs.2010.07.097CrossRefPubMedGoogle Scholar
  18. 18.
    Lightfoot JC, D'Agostino RB Jr, Hamilton CA, Jordan J, Torti FM, Kock ND, Jordan J, Workman S, Hundley WG (2010) Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging 3(5):550–558. https://doi.org/10.1161/circimaging.109.918540CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kenk M, Thackeray JT, Thorn SL, Dhami K, Chow BJ, Ascah KJ, DaSilva JN, Beanlands RS (2010) Alterations of pre- and postsynaptic noradrenergic signaling in a rat model of adriamycin-induced cardiotoxicity. J Nucl Cardiol 17(2):254–263. https://doi.org/10.1007/s12350-009-9190-xCrossRefPubMedGoogle Scholar
  20. 20.
    Emanuelov AK, Shainberg A, Chepurko Y, Kaplan D, Sagie A, Porat E, Arad M, Hochhauser E (2010) Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage. Biochem Pharmacol 79(2):180–187. https://doi.org/10.1016/j.bcp.2009.08.010CrossRefPubMedGoogle Scholar
  21. 21.
    Tatlidede E, Sehirli O, Velioglu-Ogunc A, Cetinel S, Yegen BC, Yarat A, Suleymanoglu S, Sener G (2009) Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 43(3):195–205. https://doi.org/10.1080/10715760802673008CrossRefPubMedGoogle Scholar
  22. 22.
    Karagoz B, Suleymanoglu S, Uzun G, Bilgi O, Aydinoz S, Haholu A, Turken O, Onem Y, Kandemir EG (2008) Hyperbaric oxygen therapy does not potentiate doxorubicin-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol 102(3):287–292. https://doi.org/10.1111/j.1742-7843.2007.00196.xCrossRefPubMedGoogle Scholar
  23. 23.
    Anjos Ferreira AL, Russell RM, Rocha N, Placido Ladeira MS, Favero Salvadori DM, Oliveira Nascimento MC, Matsui M, Carvalho FA, Tang G, Matsubara LS, Matsubara BB (2007) Effect of lycopene on doxorubicin-induced cardiotoxicity: an echocardiographic, histological and morphometrical assessment. Basic Clin Pharmacol Toxicol 101(1):16–24. https://doi.org/10.1111/j.1742-7843.2007.00070.xCrossRefPubMedGoogle Scholar
  24. 24.
    Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, Steinmetz N, van Eck-Smit BL (2004) Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 45(5):842–848PubMedGoogle Scholar
  25. 25.
    Koh E, Nakamura T, Takahashi H (2004) Troponin-T and brain natriuretic peptide as predictors for adriamycin-induced cardiomyopathy in rats. Circ J 68(2):163–167CrossRefPubMedGoogle Scholar
  26. 26.
    Bertinchant JP, Polge A, Juan JM, Oliva-Lauraire MC, Giuliani I, Marty-Double C, Burdy JY, Fabbro-Peray P, Laprade M, Bali JP, Granier C, de la Coussaye JE, Dauzat M (2003) Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clin Chim Acta 329(1-2):39–51CrossRefPubMedGoogle Scholar
  27. 27.
    Koh E, Ueda Y, Nakamura T, Kobayashi A, Katsuta S, Takahashi H (2002) Apoptosis in young rats with adriamycin-induced cardiomyopathy—comparison with pirarubicin, a new anthracycline derivative. Pediatr Res 51(2):256–259. https://doi.org/10.1203/00006450-200202000-00021CrossRefPubMedGoogle Scholar
  28. 28.
    Kim YH, Park SM, Kim M, Kim SH, Lim SY, Ahn JC, Song WH, Shim WJ (2012) Cardioprotective effects of rosuvastatin and carvedilol on delayed cardiotoxicity of doxorubicin in rats. Toxicol Mech Methods 22(6):488–498. https://doi.org/10.3109/15376516.2012.678406CrossRefPubMedGoogle Scholar
  29. 29.
    Guenancia C, Li N, Hachet O, Rigal E, Cottin Y, Dutartre P, Rochette L, Vergely C (2015) Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice. Toxicol Appl Pharmacol 284(2):152–162. https://doi.org/10.1016/j.taap.2015.02.015CrossRefPubMedGoogle Scholar
  30. 30.
    Sturgeon K, Schadler K, Muthukumaran G, Ding D, Bajulaiye A, Thomas NJ, Ferrari V, Ryeom S, Libonati JR (2014) Concomitant low-dose doxorubicin treatment and exercise. Am J Physiol Regul Integr Comp Physiol 307(6):R685–R692. https://doi.org/10.1152/ajpregu.00082.2014CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Milano G, Raucci A, Scopece A, Daniele R, Guerrini U, Sironi L, Cardinale D, Capogrossi MC, Pompilio G (2014) Doxorubicin and trastuzumab regimen induces biventricular failure in mice. J Am Soc Echocardiogr 27(5):568–579. https://doi.org/10.1016/j.echo.2014.01.014CrossRefPubMedGoogle Scholar
  32. 32.
    Walker JR, Sharma A, Lytwyn M, Bohonis S, Thliveris J, Singal PK, Jassal DS (2011) The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. J Am Soc Echocardiogr 24(6):699–705. https://doi.org/10.1016/j.echo.2011.01.018CrossRefPubMedGoogle Scholar
  33. 33.
    Miyata S, Takemura G, Kosai K, Takahashi T, Esaki M, Li L, Kanamori H, Maruyama R, Goto K, Tsujimoto A, Takeyama T, Kawaguchi T, Ohno T, Nishigaki K, Fujiwara T, Fujiwara H, Minatoguchi S (2010) Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. Am J Pathol 176(2):687–698. https://doi.org/10.2353/ajpath.2010.090222CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jassal DS, Han SY, Hans C, Sharma A, Fang T, Ahmadie R, Lytwyn M, Walker JR, Bhalla RS, Czarnecki A, Moussa T, Singal PK (2009) Utility of tissue Doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. J Am Soc Echocardiogr 22(4):418–424. https://doi.org/10.1016/j.echo.2009.01.016CrossRefPubMedGoogle Scholar
  35. 35.
    Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, Oberley TD, St Clair DK (2007) Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 42(12):1818–1825. https://doi.org/10.1016/j.freeradbiomed.2007.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li K, Sung RY, Huang WZ, Yang M, Pong NH, Lee SM, Chan WY, Zhao H, To MY, Fok TF, Li CK, Wong YO, Ng PC (2006) Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation 113(18):2211–2220. https://doi.org/10.1161/circulationaha.105.560250CrossRefPubMedGoogle Scholar
  37. 37.
    Yi X, Bekeredjian R, DeFilippis NJ, Siddiquee Z, Fernandez E, Shohet RV (2006) Transcriptional analysis of doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 290(3):H1098–H1102. https://doi.org/10.1152/ajpheart.00832.2005CrossRefPubMedGoogle Scholar
  38. 38.
    Shizukuda Y, Matoba S, Mian OY, Nguyen T, Hwang PM (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273(1-2):25–32CrossRefPubMedGoogle Scholar
  39. 39.
    Liu FF, Stone JR, Schuldt AJ, Okoshi K, Okoshi MP, Nakayama M, Ho KK, Manning WJ, Marchionni MA, Lorell BH, Morgan JP, Yan X (2005) Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. Am J Physiol Heart Circ Physiol 289(2):H660–H666. https://doi.org/10.1152/ajpheart.00268.2005CrossRefPubMedGoogle Scholar
  40. 40.
    Weinstein DM, Mihm MJ, Bauer JA (2000) Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 294(1):396–401PubMedGoogle Scholar
  41. 41.
    Akolkar G, Bhullar N, Bews H, Shaikh B, Premecz S, Bordun KA, Cheung DY, Goyal V, Sharma AK, Garber P, Singal PK, Jassal DS (2015) The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity. Cardiovasc Ultrasound 13:18. https://doi.org/10.1186/s12947-015-0011-xCrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Su H, Gorodny N, Gomez LF, Gangadharmath U, Mu F, Chen G, Walsh JC, Szardenings K, Kolb HC, Tamarappoo B (2015) Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging 8(2):e001952. https://doi.org/10.1161/circimaging.114.001952CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dolinsky VW, Rogan KJ, Sung MM, Zordoky BN, Haykowsky MJ, Young ME, Jones LW, Dyck JR (2013) Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab 305(2):E243–E253. https://doi.org/10.1152/ajpendo.00044.2013CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pramanik D, Campbell NR, Das S, Gupta S, Chenna V, Bisht S, Sysa-Shah P, Bedja D, Karikari C, Steenbergen C, Gabrielson KL, Maitra A, Maitra A (2012) A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 3(6):640–650. https://doi.org/10.18632/oncotarget.543CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Krishnamurthy K, Kanagasabai R, Druhan LJ, Ilangovan G (2012) Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice. J Pharmacol Exp Ther 341(3):829–839. https://doi.org/10.1124/jpet.112.192245CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maslov MY, Chacko VP, Hirsch GA, Akki A, Leppo MK, Steenbergen C, Weiss RG (2010) Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 299(2):H332–H337. https://doi.org/10.1152/ajpheart.00727.2009CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Deng S, Kruger A, Schmidt A, Metzger A, Yan T, Godtel-Armbrust U, Hasenfuss G, Brunner F, Wojnowski L (2009) Differential roles of nitric oxide synthase isozymes in cardiotoxicity and mortality following chronic doxorubicin treatment in mice. Naunyn Schmiedebergs Arch Pharmacol 380(1):25–34. https://doi.org/10.1007/s00210-009-0407-yCrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Niu J, Azfer A, Wang K, Wang X, Kolattukudy PE (2009) Cardiac-targeted expression of soluble fas attenuates doxorubicin-induced cardiotoxicity in mice. J Pharmacol Exp Ther 328(3):740–748. https://doi.org/10.1124/jpet.108.146423CrossRefPubMedGoogle Scholar
  49. 49.
    Zhu W, Shou W, Payne RM, Caldwell R, Field LJ (2008) A mouse model for juvenile doxorubicin-induced cardiac dysfunction. Pediatr Res 64(5):488–494. https://doi.org/10.1203/PDR.0b013e318184d732CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lopez-Olmos V, Carreon-Torres E, Luna-Luna M, Flores-Castillo C, Martinez-Ramirez M, Bautista-Perez R, Franco M, Sandoval-Zarate J, Roldan FJ, Aranda-Fraustro A, Soria-Castro E, Munoz-Vega M, Fragoso JM, Vargas-Alarcon G, Perez-Mendez O (2016) Increased HDL size and enhanced Apo A-I catabolic rates are associated with doxorubicin-induced proteinuria in New Zealand white rabbits. Lipids 51(3):311–320. https://doi.org/10.1007/s11745-016-4120-6CrossRefPubMedGoogle Scholar
  51. 51.
    Lai R, Long Y, Li Q, Zhang X, Rong T (2011) Oxidative stress markers may not be early markers of doxorubicin-induced cardiotoxicity in rabbits. Exp Ther Med 2(5):947–950. https://doi.org/10.3892/etm.2011.306CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lai RC, Wang XD, Zhang X, Lin WQ, Rong TH (2012) Heart fatty acid-binding protein may not be an early biomarker for anthracycline-induced cardiotoxicity in rabbits. Med Oncol 29(3):2303–2308. https://doi.org/10.1007/s12032-011-9843-xCrossRefPubMedGoogle Scholar
  53. 53.
    Barcin C, Kursaklioglu H, Safali M, Iyisoy A, Kose SB, Barindik N, Isik E (2005) Effect of octreotide in the prevention of doxorubicin cardiotoxicity. Anadolu Kardiyol Derg 5(1):18–23PubMedGoogle Scholar
  54. 54.
    Gambliel HA, Burke BE, Cusack BJ, Walsh GM, Zhang YL, Mushlin PS, Olson RD (2002) Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochem Biophys Res Commun 291(3):433–438. https://doi.org/10.1006/bbrc.2002.6380CrossRefPubMedGoogle Scholar
  55. 55.
    Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37(1):7–11CrossRefPubMedGoogle Scholar
  56. 56.
    Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, Lamantia G, Colombo N, Cortinovis S, Dessanai MA, Nole F, Veglia F, Cipolla CM (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol Off J Am Soc Clin Oncol 28(25):3910–3916. https://doi.org/10.1200/jco.2009.27.3615CrossRefGoogle Scholar
  57. 57.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109(22):2749–2754. https://doi.org/10.1161/01.cir.0000130926.51766.ccCrossRefPubMedGoogle Scholar
  58. 58.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603. https://doi.org/10.1161/circimaging.112.973321CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62(6):865–872PubMedGoogle Scholar
  60. 60.
    Cove-Smith L, Woodhouse N, Hargreaves A, Kirk J, Smith S, Price SA, Galvin M, Betts CJ, Brocklehurst S, Backen A, Radford J, Linton K, Roberts RA, Schmitt M, Dive C, Tugwood JD, Hockings PD, Mellor HR (2014) An integrated characterization of serological, pathological, and functional events in doxorubicin-induced cardiotoxicity. Toxicol Sci 140(1):3–15. https://doi.org/10.1093/toxsci/kfu057CrossRefPubMedGoogle Scholar
  61. 61.
    Friedman MA, Bozdech MJ, Billingham ME, Rider AK (1978) Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. JAMA 240(15):1603–1606CrossRefPubMedGoogle Scholar
  62. 62.
    Mackay B, Ewer MS, Carrasco CH, Benjamin RS (1994) Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol 18(1-2):203–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Takehiro Nakahara
    • 1
    • 2
    • 3
  • Takashi Tanimoto
    • 1
    • 4
  • Artiom D. Petrov
    • 1
  • Kiyotake Ishikawa
    • 5
  • H. William Strauss
    • 1
    • 2
  • Jagat Narula
    • 1
  1. 1.Division of CardiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Molecular Imaging and Therapy SectionMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Department of Diagnostic RadiologyKeio University School of MedicineTokyoJapan
  4. 4.Wakayama Medical UniversityWakayamaJapan
  5. 5.Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations