Advertisement

Characterization of the Differential Progression of Left Ventricular Remodeling in a Rat Model of Pressure Overload Induced Heart Failure. Does Clip Size Matter?

  • Antoine H. Chaanine
  • Roger J. Hajjar
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1816)

Abstract

Despite the use of inbred animals, phenotypic variability is usually encountered in rats subjected to pressure overload. This chapter describes techniques for creating a rat model of pressure overload by ascending aortic banding procedure and noninvasive characterization of the variable phenotypes by means of echocardiography. We address the variable phenotypes encountered in this model with moderate versus severe ascending aortic banding. We also describe some of the echocardiographic and hemodynamic parameters and the degree of interstitial fibrosis and extracellular matrix remodeling encountered in each of the different phenotypes.

Key words

Ascending aortic banding Pressure overload Phenotypes Hypertrophy Heart failure Myocardial remodeling Fibrosis 

Notes

Acknowledgments

This work is supported by NIH R01 HL117505, HL 119046, HL129814, 128072, HL131404, R01HL135093, a P50 HL112324, and two Transatlantic Fondation Leducq grants. We would like to acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute, National Institutes of Health.

References

  1. 1.
    McMurray JJ, Petrie MC, Murdoch DR, Davie AP (1998) Clinical epidemiology of heart failure: public and private health burden. Eur Heart J 19(Suppl P):P9–P16PubMedGoogle Scholar
  2. 2.
    Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575. https://doi.org/10.1172/jci31044CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. https://doi.org/10.1146/annurev.physiol.65.092101.142243CrossRefPubMedGoogle Scholar
  4. 4.
    Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380. https://doi.org/10.1056/NEJMra072139CrossRefPubMedGoogle Scholar
  5. 5.
    Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122(25):2727–2735. https://doi.org/10.1161/circulationaha.110.942268CrossRefPubMedGoogle Scholar
  6. 6.
    Rothermel BA, Hill JA (2008) Autophagy in load-induced heart disease. Circ Res 103(12):1363–1369. https://doi.org/10.1161/circresaha.108.186551CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barrick CJ, Dong A, Waikel R, Corn D, Yang F, Threadgill DW, Smyth SS (2009) Parent-of-origin effects on cardiac response to pressure overload in mice. Am J Physiol Heart Circ Physiol 297(3):H1003–H1009. https://doi.org/10.1152/ajpheart.00896.2008CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW (2007) Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 292(5):H2119–H2130. https://doi.org/10.1152/ajpheart.00816.2006CrossRefPubMedGoogle Scholar
  9. 9.
    Lygate CA, Schneider JE, Hulbert K, ten Hove M, Sebag-Montefiore LM, Cassidy PJ, Clarke K, Neubauer S (2006) Serial high resolution 3D-MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Res Cardiol 101(1):8–16. https://doi.org/10.1007/s00395-005-0546-3CrossRefPubMedGoogle Scholar
  10. 10.
    Chaanine AH, Sreekumaran Nair K, Bergen RH 3rd, Klaus K, Guenzel AJ, Hajjar RJ, Redfield MM (2017) Mitochondrial integrity and function in the progression of early pressure overload-induced left ventricular remodeling. J Am Heart Assoc 6(6). https://doi.org/10.1161/jaha.117.005869CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ (2013) Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail 6(3):572–583. https://doi.org/10.1161/circheartfailure.112.000200CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular DiseasesMayo ClinicRochesterUSA
  2. 2.Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations