Advertisement

Selection of Molecular Markers for the Estimation of Somaclonal Variation

  • Octavio Martínez
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Tissue culture for plant micropropagation is known to be a source of genetic changes termed “somaclonal variation”. This protocol is designed to help in the selection of one or more types of molecular marker systems for the optimal detection and measurement of somaclonal variation. Somaclonal variation is influenced by the reproductive biology of the species, the number of individuals taken as tissue source, and the tissue culture protocol, while its detection and measurement depends upon the molecular marker system selected, which can also vary in the intensity of genome sampling. In turn, the intensity of genome sampling can be regulated varying parameters of the molecular technique. These factors are discussed and illustrated with in silico molecular marker protocols. Software, programed in R, to perform simulation and evaluation of somaclonal variation is made publicly available.

Key words

Molecular markers Somaclonal variation 

References

  1. 1.
    Gupta P, Roy J, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535Google Scholar
  2. 2.
    Mah JT, Chia K (2007) A gentle introduction to SNP analysis: resources and tools. J Bioinform Comput Biol 5:1123–1138. https://doi.org/10.1142/S0219720007003090 CrossRefPubMedGoogle Scholar
  3. 3.
    Väil Ü, Brandström M, Johansson M et al (2008) Insertion-deletion polymorphisms [indels] as genetic markers in natural populations. BMC Genet 9:8. https://doi.org/10.1186/1471-2156-9-8 CrossRefGoogle Scholar
  4. 4.
    Suda J, Krahulcová A, P Trávníek P et al (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450CrossRefGoogle Scholar
  5. 5.
    Larkin PJ, Scowcroft WR (1981) Somaclonal variation –a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. https://doi.org/10.1007/BF02342540 CrossRefGoogle Scholar
  6. 6.
    Karp A (1991) On the current understanding of somaclonal variation. Oxford Surveys of Plant Molecular and Cell BiologyGoogle Scholar
  7. 7.
    Jain SM, Brar DS, Ahloowalia B (1998) Somaclonal variation and induced mutations in crop improvement. Springer, Netherlands. https://doi.org/10.1007/978-94-015-9125-6 CrossRefGoogle Scholar
  8. 8.
    Bairu MW, Aremu AO, J Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x CrossRefGoogle Scholar
  9. 9.
    Jiang C, Mithani A, Gan X et al (2011) Regenerant arabidopsis lineages display a distinct genome- wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385–1390. https://doi.org/10.1016/j.cub.2011.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302. https://doi.org/10.1007/BF00023959 CrossRefGoogle Scholar
  11. 11.
    Bhat S, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681. https://doi.org/10.1016/S0168-9452[02]00152-8CrossRefGoogle Scholar
  12. 12.
    Sahijram L, Soneji JR, Bollamma K (2003) Invited review: analyzing somaclonal variation in micro- propagated bananas [Musa spp.]. In Vitro Cell Dev Biol Plant 39:551–556. https://doi.org/10.1079/IVP2003467 CrossRefGoogle Scholar
  13. 13.
    Barrett SC (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284. https://doi.org/10.1038/nrg776 CrossRefPubMedGoogle Scholar
  14. 14.
    Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124. https://doi.org/10.1007/BF00120641 CrossRefGoogle Scholar
  15. 15.
    Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x CrossRefPubMedGoogle Scholar
  16. 16.
    Hayano-Kanashiro C, Martínez O, Reyes-Valdés MH et al (2017) An SSR-based approach incorporating a novel algorithm for identification of rare maize genotypes facilitates criteria for landrace conservation in Mexico. Ecol Evol 7:1680–1690. https://doi.org/10.5061/dryad.c9086 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Russo VE, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. 18.
    Peredo EL, Arroyo-Garcia R, Revilla MA (2009) Epigenetic changes detected in micropropagated hop plants. J Plant Physiol 166:1101–1111. https://doi.org/10.1016/j.jplph.2008.12.015 CrossRefPubMedGoogle Scholar
  19. 19.
    Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314PubMedPubMedCentralGoogle Scholar
  20. 20.
    Perez T, Albornoz L, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7:1347–1357. https://doi.org/10.1046/j.1365-294x.1998.00484.x CrossRefPubMedGoogle Scholar
  21. 21.
    Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. https://doi.org/10.1093/nar/23.21.4407 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. https://doi.org/10.1093/nar/18.22.6531 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wenzl P, Carling J, Kudrna D et al (2004) Diversity arrays technology [DArT] for whole-genome profiling of barley. Proc Natl Acad Sci U S A 101:9915–9920. https://doi.org/10.1073/pnas.0401076101 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA [RAD] markers. Gen Res 17:240–248. https://doi.org/10.1101/gr.5681207 CrossRefGoogle Scholar
  25. 25.
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism [SRAP], a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in brassica. Theor Appl Genet 103:455–461. https://doi.org/10.1007/s001220100570 CrossRefGoogle Scholar
  26. 26.
    He J, Zhao X, Laroche A et al (2014) Genotyping-by-sequencing [GBS], an ultimate marker-assisted selection [mas] tool to accelerate plant breeding. Front Plant Sci 5:484. https://doi.org/10.3389/fpls.2014.00484 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genet Res 19:1068–1076. https://doi.org/10.1101/gr.089516.108 CrossRefGoogle Scholar
  28. 28.
    Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced rad markers. PLoS One 3:e3376. https://doi.org/10.1371/journal.pone.0003376 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ganal MW, Polley A, Graner EM et al (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828. https://doi.org/10.1007/s12038-012-9225-3 CrossRefPubMedGoogle Scholar
  30. 30.
    McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455. https://doi.org/10.1038/74542 CrossRefPubMedGoogle Scholar
  31. 31.
    KS W, Jones R, Danneberger L et al (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258CrossRefGoogle Scholar
  32. 32.
    Paran I, Michelmore R (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993. https://doi.org/10.1007/BF00215038 CrossRefPubMedGoogle Scholar
  33. 33.
    Orita M, Iwahana H, Kanazawa H et al (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86:2766–2770. https://doi.org/10.1073/pnas.86.8.2766 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Beckmann J, Soller M (1990) Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Nat Biotechnol 8:930–932. https://doi.org/10.1038/nbt1090-930 CrossRefGoogle Scholar
  35. 35.
    Wang D, Gong Z, Gong Z et al (2003) Target region amplification polymorphism [TRAP]: a novel marker technique for plant genotyping. Fen zi zhi wu yu zhong 2:740–750. https://doi.org/10.1007/BF02772804 CrossRefGoogle Scholar
  36. 36.
    Nakamura Y, Leppert M, O’Connell P et al (1987) Variable number of tandem repeat [VNTR] markers for human gene mapping. Science 235:1616–1623. https://doi.org/10.1126/science.3029872 CrossRefPubMedGoogle Scholar
  37. 37.
    Chang RY, O’donoughue L, Bureau T (2001) Inter-mite polymorphisms [IMP]: a high through- put transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781. https://doi.org/10.1007/s001220051709 CrossRefGoogle Scholar
  38. 38.
    Kalendar R, Grob T, Regina M et al (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711. https://doi.org/10.1007/s0012200511 CrossRefGoogle Scholar
  39. 39.
    Casa AM, Brouwer C, Nagel A et al (2000) The MITE family heartbreaker [hbr]: molecular markers in maize. Proc Natl Acad Sci U S A 97:10083–10089. https://doi.org/10.1073/pnas.97.18.10083 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Azman A, Mhiri C, Grandbastien M et al (2014) Transposable elements and the detection of somaclonal variation in plant tissue culture: a review. Malays Appl Biol 43:1–12Google Scholar
  41. 41.
    Flavell AJ, Knox MR, Pearce SR et al (1998) Retrotransposon-based insertion polymorphisms [RBIP] for high throughput marker analysis. Plant J 16:643–650. https://doi.org/10.1046/j.1365-313x.1998.00334.x CrossRefPubMedGoogle Scholar
  42. 42.
    Waugh R, McLean K, Flavell A et al (1997) Genetic distribution of bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms [S-SAP]. Mol Gen Genet 253:687–694. https://doi.org/10.1007/s004380050372 CrossRefPubMedGoogle Scholar
  43. 43.
    Va D, De N, Broeck N et al (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129. https://doi.org/10.1046/j.1365-313X.1998.00004.x CrossRefGoogle Scholar
  44. 44.
    Komori T, Nitta N (2005) Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR- based markers. Breed Sci 55:93–98. https://doi.org/10.1270/jsbbs.55.93 CrossRefGoogle Scholar
  45. 45.
    McClelland M, Welsh J (1994) RNA fingerprinting by arbitrarily primed PCR. Genet Res 4:S66–S81CrossRefGoogle Scholar
  46. 46.
    Novaes E, Drost DR, Farmerie WG et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312. https://doi.org/10.1186/1471-2164-9-312 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Deragon J, Casacuberta J, Panaud O (2008) Plant transposable elements. In: Volff J-N (ed) Plant genomes, Genome Dyn, vol 4. Karger, Basel, pp 69–82. https://doi.org/10.1159/000126007 CrossRefGoogle Scholar
  48. 48.
    Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35:231–240. https://doi.org/10.1023/A:1005774705893 CrossRefPubMedGoogle Scholar
  49. 49.
    Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188. https://doi.org/10.1023/A:1006423110134 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631. https://doi.org/10.1007/s00299-008-0507-z CrossRefPubMedGoogle Scholar
  51. 51.
    Varshney RK, Nayak SN, May GD et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530. https://doi.org/10.1016/j.tibtech.2009.05.006 CrossRefPubMedGoogle Scholar
  52. 52.
    Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing [GBS] approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  54. 54.
    Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genet 5:92–102. https://doi.org/10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  55. 55.
    Narum SR, Buerkle CA, Davey JW et al (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847. https://doi.org/10.1111/mec.12350 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918. https://doi.org/10.1111/j.1365-313X.2007.03193.x CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Haseneyer G, Schmutzer T, Seidel M et al (2011) From RNA-seq to large-scale genotyping-genomics resources for rye [Secale cereale L.]. BMC Plant Biol 11:131. https://doi.org/10.1186/1471-2229-11-131 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hiremath PJ, Farmer A, Cannon SB et al (2011) Large-scale transcriptome analysis in chickpea [Cicer arietinum L.], an orphan legume crop of the semi-arid tropics of asia and africa. Plant Biotechnol J 9:922–931. https://doi.org/10.1111/j.1467-7652.2011.00625.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hayashi K, Hashimoto N, Daigen M et al (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220. https://doi.org/10.1007/s00122-003-1553-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Shahinnia F, Sayed-Tabatabaei BE (2009) Conversion of barley SNPs into PCR-based markers using dCAPS method. Genet Mol Biol 32:564–567. https://doi.org/10.1590/S1415-47572009005000047 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mamanova L, Coffey AJ, Scott CE et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118. https://doi.org/10.1038/nmeth.1419 CrossRefPubMedGoogle Scholar
  62. 62.
    Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  63. 63.
    O’Connor-Sanchez A, Cabrera-Ponce J, Valdez-Melara M et al (2002) Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic- like structures derived from shoot tips. Plant Cell Rep 21:302–312. https://doi.org/10.1007/s00299-002-0502-8 CrossRefGoogle Scholar
  64. 64.
    Ossowski S, Schneeberger L, Lucas-Ledó JI et al (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94. https://doi.org/10.1126/science.1180677 CrossRefPubMedGoogle Scholar
  65. 65.
    Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  66. 66.
    Charif D, Lobry JR (2007) Seqinr 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M (eds) Structural approaches to sequence evolution. Springer, Berlin, Heidelberg, pp 207–232. https://doi.org/10.1007/978-3-540-35306-5_10 CrossRefGoogle Scholar
  67. 67.
    Rice P, Longden I, Bleasby A (2000) Emboss: the European molecular biology open software suite. pp. 276–277CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)GuanajuatoMéxico

Personalised recommendations