Advertisement

Genetic Transformation of Pentalinon andrieuxii Tissue Cultures

  • Yeseña Burgos-May
  • Elidé Avilés-Berzunza
  • Luis Manuel Peña-Rodríguez
  • Gregorio Godoy-Hernández
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Pentalinon andrieuxii is a species used in Mayan traditional medicine due to its biological properties. Recent studies indicate that it produces a pentacyclic triterpene-denominated betulinic acid, which presents various biological activities: antibacterial, antifungal, antiplasmodial, anti-inflammatory, antimalarial, anticancer, leishmanicidal, and antiviral, as well as steroids and sterols with leishmanicidal properties. A recent study also reported the presence of urechitol A and B in the roots; these are secondary metabolites whose biochemical function is as yet unknown. This plant therefore represents a natural source of metabolites with potential application in the pharmaceutical industry. In this chapter, a protocol is described for obtaining transgenic plants, at the reporter gene of the β-glucuronidase (GUS) via Agrobacterium tumefaciens from hypocotyl and root explants. The protocol established herein could be employed for the manipulation of the genes involved in the biosynthesis of isoprenoids or secondary metabolites of interest. To our knowledge, this is the first report of stable transformation of Pentalinon andrieuxii via Agrobacterium tumefaciens.

Key words

Agrobacterium tumefaciens Pentalinon andrieuxii Stable genetic transformation β-glucuronidase gene 

Notes

Acknowledgment

The authors would like to express their gratitude to the Consejo Nacional de Ciencia y Tecnología (CONACYT) of Mexico for the financial support received for the projects 223404 and 257915. Our thanks also for the Master’s scholarship (280663) awarded to Yeseña Beatriz Burgos May.

References

  1. 1.
    Hansen BF, Wunderlin RP (1986) Pentalinon Voigt, an earlier name for Urechites Müll. Arg. (Apocynaceae). Taxon 35:166–168CrossRefGoogle Scholar
  2. 2.
    Van den Laan, Arends JC (1985) Cytotaxonomy of the Apocynaceae. Genetica 68:3–35. https://doi.org/10.1007/BF02424563 CrossRefGoogle Scholar
  3. 3.
    Rzedowski J, Calderon G (1998) Flora del bajío y regiones adyacentes. Fascículo 70:27–28Google Scholar
  4. 4.
    Pulido MT, Serralta L (1993) Lista anotada de las plantas medicinales de uso actual en el estado de Quintana Roo, México. Centro de Investigaciones de Quintana Roo, Chetumal, p 105Google Scholar
  5. 5.
    Lezama-Dávila C, Isaac-Márquez AP, Zamora-Cresencio P et al (2007) Leishmanicidal activity of Pentalinon andrieuxii. Fitoterapia 78:255–257. https://doi.org/10.1016/j.fitote.2006.12.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Li P, Lezama-Dávila CM, Isaac-Márquez A et al (2012) Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry 82:128–135. https://doi.org/10.1016/j.phytochem.2012.06.012 CrossRefGoogle Scholar
  7. 7.
    Melchor-Macías P, Carballo-Perea JA, Hernández-Solís U (2005) Posible actividad biológica del extracto de la raíz de Pentalinon andrieuxii. Universidad del Valle de México. Dirección General Académica. Episteme No.3. Dirección Institucional de Investigación e Innovación Tecnológica. UVM - Campus ChapultepecGoogle Scholar
  8. 8.
    Moghaddam M, Ahmad F, Samzadeh-Kermani A (2012) Biological activity of betulinic acid: a review. Pharmacol Phar 3:119–123CrossRefGoogle Scholar
  9. 9.
    Domínguez-Carmona DB, Escalante-Erosa F, Garcia-Sosa K et al (2009) Antiprotozoal activity of betulinic acid derivatives. Phytomedicine 17:379–382. https://doi.org/10.1016/j.phymed.2009.08.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Yam-Puc A, Escalante-Erosa F, Pech-Lopez M et al (2009) Trinorsesquiterpenoids from the root extracts of Pentalinon andrieuxii. J Nat Pro 72:745–748. https://doi.org/10.1021/np800554n CrossRefGoogle Scholar
  11. 11.
    Yam-Puc A, Chee-Gonzalez L, Escalante-Erosa F et al (2011) Steroids from the root extract of Pentalinon andrieuxii. Phytochem Lett 5:45–48. https://doi.org/10.1016/j.phytol.2011.09.004 CrossRefGoogle Scholar
  12. 12.
    Yam-Puc A, Elide A-B, Chan-Bacab M et al (2012) Agrobacterium-mediated transient transformation of Pentalinon andrieuxii Müll. Arg. Adv Biosci Biotechnol 3:256–258. https://doi.org/10.4236/abb.2012.33035 CrossRefGoogle Scholar
  13. 13.
    Martin-Acosta JC, Avilés-Berzunza E, Godoy-Hernández G (2012) In vitro plant regeneration from explants of Pentalinon andrieuxii (Müll. Arg). Hansen & Wunderlin. UnpublishedGoogle Scholar
  14. 14.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180. https://doi.org/10.1038/303179a0 CrossRefGoogle Scholar
  15. 15.
    Lee LY, Gelvin SB (1988) T-DNA binary vectors and systems. Plant Physiol 146:325–332. https://doi.org/10.1104/pp.107.113001 CrossRefGoogle Scholar
  16. 16.
    Phillips G, Collins G (1979) In vitro tissue culture of selected legumes and plant regeneration from callus culture of red clover. Crop Sci 19:59–64. https://doi.org/10.2135/cropsci1979.0011183X001900010014x CrossRefGoogle Scholar
  17. 17.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  18. 18.
    Ellis JR (1993) Plant tissue culture and genetic transformation. In: Croy RRD (ed) Plant molecular biology, LABFAX series. Blackwell Scientific Publications, OxfordGoogle Scholar
  19. 19.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gen fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralGoogle Scholar
  20. 20.
    Dellaporta S, Wood J Hicks J (1983) A plant minipreparation: version II. Plant Mol Biol Rep 1:19–20. https://doi.org/10.1007/BF02712670 CrossRefGoogle Scholar
  21. 21.
    Vanegas PE, Valdez-Morales M, Valverde ME et al (2006) Particle bombardment, a method for gene transfer in marigold. Plant Cell Tiss Org 84:359–363. https://doi.org/10.1007/s11240-005-9030-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yeseña Burgos-May
    • 1
  • Elidé Avilés-Berzunza
    • 1
  • Luis Manuel Peña-Rodríguez
    • 2
  • Gregorio Godoy-Hernández
    • 3
  1. 1.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de YucatánMéridaMexico
  2. 2.Unidad de BiotecnologíaCentro de Investigación Científica de YucatánMéridaMexico
  3. 3.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de YucatánMéridaMéxico

Personalised recommendations