Transcription Factors: Their Role in the Regulation of Somatic Embryogenesis in Theobroma cacao L. and Other Species

  • Claudia GarciaEmail author
  • Dahyana Britto
  • Jean-Philippe Marelli
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)


Transcription factors are proteins that help with the control and regulation in the transcription of the DNA to mRNA by binding to special DNA sequences. With the aim to understand more about gene transcription regulation in Theobroma cacao L., this review outlines the principal transcription factors that were reported in other plants especially Arabidopsis thaliana and attempts at looking for the homologies with transcription factors in T. cacao. The information cited in this work is about the initiation, development, and maturation of the cacao somatic embryos and other crops. It is important to underline that there are very few publications in T. cacao discussing transcription factors that control the somatic embryogenesis process, but there is some information about transcription factors in other crops that we have used as a guide to try to understand this process.

Key words

Cacao LEC1 ABI3 LEC2 Somatic embryogenesis Transcription factors 


  1. 1.
    Motamayor JC, Risterucci AM, Lopez PA et al (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386. CrossRefPubMedGoogle Scholar
  2. 2.
    Pucciarelli D (2013) Cocoa and heart health: a historical review of the science. Nutrients 5:3854–3870. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Franzen M, Borgerhoff MM (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849. CrossRefGoogle Scholar
  4. 4.
    Motamayor JC, Lachenaud P, da Silva e Mota JW et al (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One e3311:3. CrossRefGoogle Scholar
  5. 5.
    Turnbull CJ, Hadley P (2017) International Cocoa Germplasm Database (ICGD). [Online Database]. CRA Ltd. ICE Futures Europe University of Reading, UK. Accessed 18 Jan 2017
  6. 6.
    Sondahl MR, Laurel MT, Chen Z, et al. (1994) Somatic embryogenesis and plant regeneration of cacao. US5312801 A, 1–22Google Scholar
  7. 7.
    Lopez Baez O, Bollon H, Eskes A, Pétiard V (1993) Embryogenèse somatique du cacaoyer Theobroma cacao L., à partir des pièces florales. Comptes Rendus Académie Sci Sci Vie 316:579–584Google Scholar
  8. 8.
    Bajaj YPS (1995) Biotechnology in agriculture and forestry. Somatic embryogenesis and synthetic seed I. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  9. 9.
    Maximova SN, Alemanno L, Young A et al (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol-Plant 38:252–259. CrossRefGoogle Scholar
  10. 10.
    Tan C, Furtek D (2003) Development of an in vitro regeneration system for Theobroma cacao from mature tissues. Plant Sci 164:407–412. CrossRefGoogle Scholar
  11. 11.
    Garcia C, Corrêa F, Findley S et al (2016) Optimization of somatic embryogenesis procedure for commercial clones of Theobroma cacao L. Afr J Biotechnol 15:1936–1951. CrossRefGoogle Scholar
  12. 12.
    Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fehér A (2015) Somatic embryogenesis – stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402. CrossRefPubMedGoogle Scholar
  14. 14.
    Issali AE, Traoré A, Ngoran JAK et al (2009) Relationship between some phenological parameters and somatic embryogenesis in Theobroma cacao L. J Crop Sci Biotech 11:23–30Google Scholar
  15. 15.
    Estabrooks T, Dong Z (2004) Gene expression during indirect somatic embryogenesis of plants. Proc Nova Scotian Inst Sci 42:411–419. Google Scholar
  16. 16.
    Vasilenko A, McDaniel JK, Conger BV (2000) Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata. In Vitro Cell Dev Biol-Plant 36:51–56. CrossRefPubMedGoogle Scholar
  17. 17.
    Fehér A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Samaj J (eds) Somatic embryogenesis. Springer, Berlin, Heidelberg, pp 85–101. CrossRefGoogle Scholar
  18. 18.
    Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228. CrossRefGoogle Scholar
  19. 19.
    Sharma M, Anand SK (2002) Swarming: a coordinated bacterial activity. Curr Sci 83:707–714Google Scholar
  20. 20.
    Hecht V, Vielle-Calzada J-P, Hartog MV et al (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pandey DK, Chaudhary B (2014) Role of plant somatic embryogenesis receptor kinases (serks) in cell-to-embryo transitional activity: key at novel assorted structural subunits. Am J Plant Sci 05:3177–3193. CrossRefGoogle Scholar
  22. 22.
    Albrecht C, Russinova E, Kemmerling B et al (2008) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 148:611–619. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de Oliveira Santos M, Romano E, Yotoko KSC et al (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729. CrossRefGoogle Scholar
  24. 24.
    Lee C, Clark SE (2015) A WUSCHEL-independent stem cell specification pathway is repressed by PHB, PHV and CNA in Arabidopsis. PLoS One 10:e0126006. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Florez SL, Erwin RL, Maximova SN et al (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    El Ouakfaoui S, Schnell J, Abdeen A et al (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pasternak TP (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Su YH, Zhao XY, Liu YB et al (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Křeček P, Skŭpa P, Libus J et al (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic elongation factor 1 complex: the many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 3:543–555. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Balestrazzi A, Bernacchia G, Pitto L et al (2001) Spatial expression of DNA topoisomerase I genes during cell proliferation in Daucus carota. Eur J Histochem 45:31–38. CrossRefPubMedGoogle Scholar
  32. 32.
    Duncan DR, Kriz AL, Paiva R, Widholm JM (2003) Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep 21:684–689. CrossRefPubMedGoogle Scholar
  33. 33.
    Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260. CrossRefPubMedGoogle Scholar
  34. 34.
    Sato S, Toya T, Kawahara R et al (1995) Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Mol Biol 28:39–46. CrossRefPubMedGoogle Scholar
  35. 35.
    Mantiri FR, Kurdyukov S, Lohar DP et al (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nowak K, Wójcikowska B, Gaj MD (2015) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241:967–985. CrossRefPubMedGoogle Scholar
  37. 37.
    Ledwoń A, Gaj MD (2011) LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis. Plant Growth Regul 65:157–167. CrossRefGoogle Scholar
  38. 38.
    Alemanno L, Devic M, Niemenak N et al (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227:853–866. CrossRefPubMedGoogle Scholar
  39. 39.
    Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci U S A 100:2152–2156. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Maximova SN, Florez S, Shen X et al (2014) Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biol 14:185. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang Y, Clemens A, Maximova SN, Guiltinan MJ (2014) The Theobroma cacao B3 domain transcription factor TcLEC2 plays a dual role in control of embryo development and maturation. BMC Plant Biol 14:106. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ledwoń A, Gaj MD (2009) LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677–1688. CrossRefPubMedGoogle Scholar
  43. 43.
    Guo F, Liu C, Xia H et al (2013) Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants. PLoS One 8:e71714. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Garcia
    • 1
    Email author
  • Dahyana Britto
    • 1
  • Jean-Philippe Marelli
    • 1
  1. 1.Mars Center for Cocoa ScienceItajuípe-BABrazil

Personalised recommendations