Advertisement

Proteomics as a Tool to Study Molecular Changes During Plant Morphogenesis In Vitro

  • André Luis Wendt dos Santos
  • Ricardo Souza Reis
  • Angelo Schuabb Heringer
  • Eny Iochevet Segal Floh
  • Claudete Santa-Catarina
  • Vanildo Silveira
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Proteome analysis represents a promising approach for plant tissue culture since it is now possible to identify and quantify proteins on a large scale. Biomarker discovery and the study of the molecular events associated with in vitro plant morphogenesis are considered potential targets for application of proteomics technologies. This chapter describes a protocol for application in in vitro plant material using two proteomics approaches: 2-DE coupled to mass spectrometry and liquid chromatography-linked tandem mass spectrometry.

Key words

Bioinformatics Mass spectrometry Morphogenesis Plant tissue culture Protein electrophoresis Proteomics 

Notes

Acknowledgments

This work was supported by grants from São Paulo Research Foundation—FAPESP (Proc. 15/21075-4), Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro—FAPERJ (Proc. E26/201.574/2014) and National Council for Scientific and Technological Development-CNPq (Proc. 454451/2014-8).

References

  1. 1.
    Vale EM, Heringer AS, Barroso T et al (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteome Sci 12:1–18. https://doi.org/10.1186/1477-5956-12-37 CrossRefGoogle Scholar
  2. 2.
    Heringer AS, Barroso T, Macedo AF et al (2015) Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS One 10:e0127803. https://doi.org/10.1371/journal.pone.0127803 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    dos Santos ALW, Elbl P, Navarro BV et al (2016) Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteome 130:180–189. https://doi.org/10.1016/j.jprot.2015.09.027 CrossRefGoogle Scholar
  4. 4.
    Fraga HPF, Vieira LN, Heringer AS et al (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Tiss Org 125:353–374. https://doi.org/10.1007/s11240-016-0956-y CrossRefGoogle Scholar
  5. 5.
    Reis RS, Vale EM, Heringer AS et al (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteome 130:170–179. https://doi.org/10.1016/j.jprot.2015.09.029 CrossRefGoogle Scholar
  6. 6.
    Heringer AS, Reis RS, Passamani LZ et al (2017) Comparative proteomics analysis of the effect of combined red and blue lights on sugarcane somatic embryogenesis. Acta Physiol Plantarum 39:52. https://doi.org/10.1007/s11738-017-2349-1 CrossRefGoogle Scholar
  7. 7.
    Schluter H, Apweiler R, Holzhutter H et al (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Central J 3:11. https://doi.org/10.1186/1752-153X-3-11 CrossRefGoogle Scholar
  8. 8.
    Jorrín-Novo JV, Pascual J, Sánchez-Lucas R et al (2015) Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 15:1089–1112. https://doi.org/10.1002/pmic.201400349 CrossRefPubMedGoogle Scholar
  9. 9.
    Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13. https://doi.org/10.1016/j.jprot.2013.01.010 CrossRefGoogle Scholar
  10. 10.
    Chen EI, Hewel J, Felding-Habermann B et al (2006) Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics 5:53–56. https://doi.org/10.1074/mcp.T500013-MCP200 CrossRefPubMedGoogle Scholar
  11. 11.
    Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech 19:242–247. https://doi.org/10.1038/85686 CrossRefGoogle Scholar
  12. 12.
    Angelo Schuabb Heringer, Claudete Santa-Catarina, Vanildo Silveira, (2018) Insights from Proteomic Studies into Plant Somatic Embryogenesis. PROTEOMICS 18 (5-6):1700265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • André Luis Wendt dos Santos
    • 1
  • Ricardo Souza Reis
    • 2
    • 3
  • Angelo Schuabb Heringer
    • 2
    • 3
  • Eny Iochevet Segal Floh
    • 1
  • Claudete Santa-Catarina
    • 4
  • Vanildo Silveira
    • 2
    • 3
  1. 1.Laboratory of Plant Cell Biology, Department of Botany, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  2. 2.Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB)Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos Goytacazes, RJBrazil
  3. 3.Unidade de Biologia Integrativa, Setor de Genômica e ProteômicaUENFCampos dos GoytacazesBrazil
  4. 4.Laboratório de Biologia Celular e Tecidual, CBBUENFCampos dos GoytacazesBrazil

Personalised recommendations