Application of in Casa Pollination and Embryo Rescue Techniques for Breeding of Agave Species

  • Benjamín Rodríguez-GarayEmail author
  • Sigifredo López-Díaz
  • José Manuel Rodríguez-Domínguez
  • Antonia Gutiérrez-Mora
  • Ernesto Tapia-Campos
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)


Species of the genus Agave are distributed originally in the tropical and subtropical areas of the American continent with about 200 taxa and 136 species, and its center of origin is probably limited to México. These kind of plants usually grow and live in extreme environmental conditions such as heat and drought where their CAM pathway for fixing CO2 allow them to survive in conditions where other plants cannot survive. Although this kind of plants resist harsh environmental conditions, climate change is imposing stronger kinds of stress that diminish their productive potential and in some cases are cause of death. Because of this, genetic improvement becomes a need of fundamental importance in this kind of species. Despite their economic importance, Agave species have received scarce attention with regard to its genetic improvement, probably due to their unique botanical features such as plant architecture, spines, long life span, and monocarpy, among others, which make hybridization a difficult task for the intra- and interspecific gene transfer and creation of genetic variability among many other breeding techniques.

The protocol here presented is a combination of a novel hybridization technique and biotechnological tools, and allows the use of several procedures for the genetic improvement of agaves such as pollen selection, clonal selection, and somatic cell selection, among others, since the rescued embryos can be used for micropropagation, for phenotype/genotype selection or the production of cell lineages for diverse genetic improvement purposes.

Key words

Agave spp. Breeding Embryo rescue Pollination 



This work was supported (to B.R.G.) by Consejo Nacional de Ciencia y Tecnología, México (CB-24554) and Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura-Servicio Nacional de Inspección y Certificación de Semillas, México (BEI-AGA-10-8, BEI-AGA-11-8).


  1. 1.
    Gentry HS (1982) Agaves of continental North America. The University of Arizona Press, Tucson, Arizona, p 670Google Scholar
  2. 2.
    Rodríguez-Garay B (2016) Somatic embryogenesis in Agave spp. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Cham, pp 267–282. CrossRefGoogle Scholar
  3. 3.
    Zadocks J, Shein R (1979) Epidemiology and plant disease management. Oxford Univ. Press, New York, p 427Google Scholar
  4. 4.
    Avila de Dios E, Gomez Vargas AD, Damián Santos ML et al (2015) New insights into plant glycoside hydrolase family 32 in Agave species. Front Plant Sci 6:594. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vidal R (1925) Breeding work with henequen and sisal. J Hered 16:9–12. CrossRefGoogle Scholar
  6. 6.
    Portillo L, Santacruz-Ruvalcaba F, Gutiérrez-Mora A et al (2007) Somatic embryogenesis in Agave tequilana weber cultivar Azul. In Vitro Cell Dev Biol Plant 43:569–575. CrossRefGoogle Scholar
  7. 7.
    Gutiérrez-Mora A, Ruvalcaba-Ruiz D, Rodríguez-Domínguez JM et al (2004) Recent advances in the biotechnology of Agave: a cell approach. Recent Res Dev Cell Biol 2:17–36Google Scholar
  8. 8.
    Flores-Benítez S, Jiménez-Bremont JF, Rosales-Mendoza S et al (2007) Genetic transformation of Agave salmiana by Agrobacterium tumefaciens and particle bombardment. Plant Cell Tiss Org 91:215–224. CrossRefGoogle Scholar
  9. 9.
    López-Díaz S, Rodríguez-Garay B (2008) Simple methods for in vitro pollen germination and pollen preservation of selected species of the genus Agave. e-Gnosis 6:2. Google Scholar
  10. 10.
    Hauser EJP, Morrison JH (1964) The cytochemical reduction of nitroblue tetrazolium as an index of pollen viability. Am J Bot 51:748–752. CrossRefGoogle Scholar
  11. 11.
    Saghai-Maroof MA, Soliman K, Jorgensen RA et al (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bassam BJ, Caetano-Anolles G (1993) Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotech 42:181–188. CrossRefGoogle Scholar
  14. 14.
    Meyer-Nava S (2009) Identificación de híbridos interespecificos de Agave tequilana, A. angustifolia ‘Lineño’ y A. colimana por marcadores AFLP. Universidad Autónoma de Guadalajara. Tesis de licenciatura. Guadalajara, Jalisco, México. p. 82Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Benjamín Rodríguez-Garay
    • 1
    Email author
  • Sigifredo López-Díaz
    • 2
  • José Manuel Rodríguez-Domínguez
    • 1
  • Antonia Gutiérrez-Mora
    • 1
  • Ernesto Tapia-Campos
    • 1
  1. 1.Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de JaliscoZapopanMexico
  2. 2.Departamento de InvestigacionCentro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán-Instituto Politécnico NacionalJiquilpanMexico

Personalised recommendations