Advertisement

Cryopreservation of Pineapple Shoot Tips by the Droplet Vitrification Technique

  • Fernanda Vidigal Duarte Souza
  • Everton Hilo de Souza
  • Ergun Kaya
  • Lívia de Jesus Vieira
  • Ronilze Leite da Silva
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Cryopreservation is a technique that allows the conservation of many species for long periods. Among the protocols used for cryopreservation, droplet vitrification has shown efficient results in preserving shoot tips of various wild and cultivated pineapple genotypes. The method consists of extraction of shoot tips from plants grown in vitro, dehydration for a period of 48 h in a preculture medium supplemented with a high concentration of sucrose, treatment in a plant vitrification solution (PVS2), and immersion in liquid nitrogen. The method described in this chapter has produced survival and regeneration indices of around 70%, depending on the genotype and physiological conditions of the initial explants. The objective of this chapter is to describe in detail a droplet vitrification protocol for shoot tips that is easy to perform for cryopreservation of pineapple germplasm.

Key words

Ananas comosus Conservation Plant vitrification solution 

Notes

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/EMBRAPA program, and Embrapa Mandioca e Fruticultura for financial support and Helder Lima Carvalho, technician of the Laboratório de Cultura de Tecido de Plantas, for his valuable collaboration in preparing this chapter.

References

  1. 1.
    Food and Agriculture Organization, FAO (2017) Database. United States: database, United States: FAO/FAOSTAT. http://faostat.fao.org/. Accessed 28 Mar 2017
  2. 2.
    Leal F, Antoni MG (1981) Espécies del género Ananas: origem y distribución geográfica. Rev Fac Agron 29:5–12Google Scholar
  3. 3.
    Souza EH, Souza FVD, Costa MAPC et al (2012) Genetic variation of the Ananas genus with ornamental potential. Genet Resour Crop Evol 59:1357–1376. https://doi.org/10.1007/s10722-011-9763-9 CrossRefGoogle Scholar
  4. 4.
    Silva RL, Ferreira CF, Lêdo CAS et al (2016) Viability and genetic stability of pineapple germplasm after 10 years of in vitro conservation. Plant Cell Tiss Org 127:123–133. https://doi.org/10.1007/s11240-016-1035-0 CrossRefGoogle Scholar
  5. 5.
    Souza FVD, Kaya E, Vieira LJ et al (2016) Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tiss Org 124:351–360. https://doi.org/10.1007/s11240-015-0899-8 CrossRefGoogle Scholar
  6. 6.
    González-Arnao MT, Ravelo MM, Urra C et al (1998) Cryopreservation of pineapple (Ananas comosus) apices. CryoLetters 19:375–382Google Scholar
  7. 7.
    González-Arnao MT, Ravelo MM, Urra C et al (2000) Cryopreservation of pineapple (Ananas comosus) apices by vitrification. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. JIRCAS/IPGRI, Japan, Italy, pp 390–392Google Scholar
  8. 8.
    Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, González-Arnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. CryoLetters 25:405–414PubMedGoogle Scholar
  9. 9.
    Martinez-Montero ME, Martínez J, Engelmann F, González-Arnao MT (2005) Cryopreservation of pineapple [Ananas comosus (L.) Merr] apices and calluses. Acta Hortic 666:127–130. https://doi.org/10.17660/ActaHortic.2005.666.12 CrossRefGoogle Scholar
  10. 10.
    Martinez-Montero ME, González-Arnao MT, Engelmann F (2012) Cryopreservation of tropical plant germplasm with vegetative propagation: review of sugarcane (Saccharum spp.) and pineapple (Ananas comosus (L.) Merrill) cases. In: Katkov I (ed) Current frontiers in cryopreservation. Intech, Croatia, pp 359–396. https://doi.org/10.5772/32047 CrossRefGoogle Scholar
  11. 11.
    Adu-Gyamfi R, Wetten A, Lopez CMR (2016) Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PLoS One 11:1–13. https://doi.org/10.1371/journal.pone.0158857 CrossRefGoogle Scholar
  12. 12.
    O’Brien C, Constantin M, Walia A et al (2016) Cryopreservation of somatic embryos for avocado germplasm conservation. Sci Hortic 211:328–335. https://doi.org/10.1016/j.scienta.2016.09.008 CrossRefGoogle Scholar
  13. 13.
    Poisson AS, Berthelot P, Le Bras C et al (2016) A droplet-vitrification protocol enabled cryopreservation of doubled haploid explants of Malus x domestica Borkh. ‘Golden delicious’. Sci Hortic 209:189–191. https://doi.org/10.1016/j.scienta.2016.06.030 CrossRefGoogle Scholar
  14. 14.
    Rathwell R, Popova E, Shukla MR, Saxena PK (2016) Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Can J For Res 46:1284–1292. https://doi.org/10.1139/cjfr-2016-0166 CrossRefGoogle Scholar
  15. 15.
    Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cel Dev Biol Plant 40:427–433. https://doi.org/10.1079/IVP2004541 CrossRefGoogle Scholar
  16. 16.
    Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–21910. https://doi.org/10.1080/07352680802202034 CrossRefGoogle Scholar
  17. 17.
    Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72276-4 CrossRefGoogle Scholar
  18. 18.
    Panis B (2009) Cryopreservation on Musa germplasm. Practical Guide, 2nd edn. Bioversity International, Rome, ItalyGoogle Scholar
  19. 19.
    Engelmann F, Takagi H (eds) (2000) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Center for Agricultural Sciences, Tsukuba, Japan/International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  20. 20.
    Murashige T, Skoog FA (1962) A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  21. 21.
    Souza EH, Souza FVD, Carvalho MJS et al (2012) Growth regulators and physical state of culture media in the micropropagation of ornamental pineapple hybrids. Plant Cell Cult Microprop 8:1–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fernanda Vidigal Duarte Souza
    • 1
    • 2
  • Everton Hilo de Souza
    • 2
    • 3
  • Ergun Kaya
    • 4
  • Lívia de Jesus Vieira
    • 3
  • Ronilze Leite da Silva
    • 5
  1. 1.Embrapa Cassava and FruitsCruz das AlmasBrazil
  2. 2.Federal University of Recôncavo da Bahia (UFRB)Cruz das AlmasBrazil
  3. 3.Scholarship of Coordination for the Improvement of Higher Education Personnel (CAPES) at CAPES-EMBRAPA Program in Embrapa Cassava and Fruits (CNPMF)Cruz das AlmasBrazil
  4. 4.Department of Molecular Biology and GeneticsFaculty of Science Mugla Sitki Kocman University KotekiMuglaTurkey
  5. 5.State University of Feira de Santana (UEFS)Feira de SantanaBrazil

Personalised recommendations