Somatic Embryogenesis of Quercus suber L. From Immature Zygotic Embryos

  • Pilar S. TestillanoEmail author
  • Aránzazu Gómez-Garay
  • Beatriz Pintos
  • María C. Risueño
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)


Quercus suber L., cork oak, is a forest tree of high social and economic value. The cork is traditionally used in the wine industry to produce bottle stoppers, but it is also a very good material for both thermal and acoustic insulation in construction. Since its harvest does not harm the tree, the use of cork in the industry has a positive impact on the environment.

Somatic embryogenesis is considered a feasible system for in vitro regeneration procedures, with many advantages in woody species. Classical genetic breeding programs have important limitations in forest trees, like cork oak, due to their long life span and difficulties of seed conservation and vegetative reproduction. Therefore, somatic embryogenesis has a great potential for large-scale propagation and cryopreservation of elite genotypes, as well as for transformation strategies. In the case of Q. suber, several in vitro propagation systems through somatic embryogenesis have been reported, with different efficiency rates.

In the present chapter, updated information is reported about an efficient protocol for induction of somatic embryogenesis of Q. suber from immature zygotic embryos, as well as methods for proliferation and maturation of somatic embryos, germination, plantlet regeneration, and acclimatization.

Key words

Cork oak Embryo differentiation Embryogenic masses Embryo maturation Somatic embryogenesis Plant cell reprogramming 



Work supported by projects funded by the Spanish Ministry of Economy and Competitiveness, MINECO, and the European Regional Development Fund (ERDF/FEDER) of the European Commission (BFU2011-23752, AGL2014-52028-R, AGL2017-82447-R).


  1. 1.
    Germanà MA, Lambardi M (2016) In vitro embryogenesis in higher plants. Springer, New York/Heidelberg/Dordrecht/London. CrossRefGoogle Scholar
  2. 2.
    Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis: fundamental aspects and applications. Springer, New York/Heidelberg. CrossRefGoogle Scholar
  3. 3.
    Maury PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.). Plant Cell Tiss Org 74:229–235. CrossRefGoogle Scholar
  4. 4.
    Corredoira E, Toribio M, Vieitez E (2014) Clonal propagation via somatic embryogenesis in Quercus spp. In: Ramawhat KG, Mérillon JM, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, FL, pp 262–302Google Scholar
  5. 5.
    Corredoira E, Cano V, Bárány I et al (2017) Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba. J Plant Physiol 213:42–54. CrossRefPubMedGoogle Scholar
  6. 6.
    Barra-Jiménez A, Blasco M, Ruiz-Galea M et al (2014) Cloning mature holm oak trees by somatic embryogenesis. Trees 28:657–667. CrossRefGoogle Scholar
  7. 7.
    Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber L. Physiol Plant 85:30–34. CrossRefGoogle Scholar
  8. 8.
    Manzanera JA, Astorga R, Bueno MA (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42:90–93Google Scholar
  9. 9.
    Hernández I, Celestino C, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I: factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764. CrossRefPubMedGoogle Scholar
  10. 10.
    Pintos B, Manzanera JA, Bueno MA (2010) Oak somatic and gametic embryos maturation is affected by charcoal and specific amino acids mixture. Ann For Sci 67:205. CrossRefGoogle Scholar
  11. 11.
    García-Martín G, Manzanera JA, González-Benito E (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tiss Org 80:171–177. CrossRefGoogle Scholar
  12. 12.
    Gómez-Garay A, López JA, Camafeita E et al (2013) Proteomic perspective of Quercus suber somatic embryogenesis. J Proteome 93:314–325. CrossRefGoogle Scholar
  13. 13.
    Gómez-Garay A, López JA, Pintos B et al (2009) Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9:4355–4367. CrossRefGoogle Scholar
  14. 14.
    Bueno MA, Gómez A, Sepulveda F et al (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960. CrossRefPubMedGoogle Scholar
  15. 15.
    Ramírez C, Testillano PS, Pintos B et al (2004) Changes in pectins and MAPKs related to cell development during early microspore embryogenesis in Quercus suber L. Eur J Cell Biol 83:213–225. CrossRefPubMedGoogle Scholar
  16. 16.
    Rodríguez-Sanz H, Manzanera JA, Solís MT et al (2014) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biol 14:224. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. CrossRefGoogle Scholar
  18. 18.
    Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue culture in vitro. Bot Gaz 136:196–200. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pilar S. Testillano
    • 1
    Email author
  • Aránzazu Gómez-Garay
    • 2
  • Beatriz Pintos
    • 1
  • María C. Risueño
    • 1
  1. 1.Pollen Biotechnology of Crop Plants, Biological Research CentreMadridSpain
  2. 2.Faculty of Biology, Department of Plant Biology IUCMMadridSpain

Personalised recommendations