Advertisement

Auxin Immunolocalization in Coffea canephora Tissues

  • Ruth E. Márquez-López
  • Ángela Ku-González
  • Hugo A. Méndez-Hernández
  • Rosa M. Galaz-Ávalos
  • Víctor M. Loyola-Vargas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Auxins are plant growth regulators that participate in a variety of biological mechanisms during the growth and development of plants. The most abundant natural auxin is indole-3-acetic acid (IAA). The physiological processes regulated by IAA depend on their temporal space accumulation in different tissues of a plant. This accumulation is regulated by its biosynthesis, conjugation, degradation, and transport. Therefore tools that allow us a qualitative and quantitative detection of IAA in plant tissues are very useful to understand the homeostasis of IAA during the life cycle of plants. In this protocol, the complete procedure for localization of IAA in different tissues of Coffea canephora is described using specific anti-IAA monoclonal antibodies.

Key words

Antibody Coffea canephora Immunocytochemistry Indole-3-acetic acid Polar auxin transport 

Notes

Acknowledgment

The work from VMLV laboratory was supported by a grant received from the National Council for Science and Technology (CONACyT, 257436).

References

  1. 1.
    Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858. https://doi.org/10.1146/annurev.arplant.56.032604.144208 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Paque S, Weijers D (2016) Auxin: the plant molecule that influences almost anything. BMC Biol 14:1–5. https://doi.org/10.1186/s12915-016-0291-0 CrossRefGoogle Scholar
  3. 3.
    De-la-Peña C, Nic-Can G, Avilez-Montalvo JR et al (2017) The role of miRNAs in auxin signaling and regulation during plant development. In: Barciszewski J (ed) Plant epigenetics. Springer, Cham, pp 23–48. https://doi.org/10.1007/978-3-319-55520-1_2 CrossRefGoogle Scholar
  4. 4.
    Mironova V, Teale W, Shahriari M et al (2017) The systems biology of auxin in developing embryos. Trends Plant Sci 22:225–235. https://doi.org/10.1016/j.tplants.2016.11.010 CrossRefGoogle Scholar
  5. 5.
    Zazimalová E, Petrášek J, Benková E (2014) Auxin and its role in plant development. Springer, Wien Heidelberg New York Dordrecht LondonCrossRefGoogle Scholar
  6. 6.
    Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950. https://doi.org/10.1242/dev.086363 CrossRefPubMedGoogle Scholar
  7. 7.
    Went FW, Thiman KS (1937) Phytohormones. McMillan Co., New YorkGoogle Scholar
  8. 8.
    Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis. Fundamental aspects and applications. Springer, Switzerland, pp 171–181. https://doi.org/10.1007/978-3-319-33705-0_10 CrossRefGoogle Scholar
  9. 9.
    Zazimalová E, Murphy AS, Yang H et al (2010) Auxin transporters—why so many? Cold Spring Harb Perspect Biol 2:a001552. https://doi.org/10.1101/cshperspect.a001552 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Okada K, Ueda J, Komaki MK et al (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684. https://doi.org/10.1105/tpc.3.7.677 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32. https://doi.org/10.1105/tpc.114.134874 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ayil-Gutiérrez BA, Galaz-Ávalos RM, Peña-Cabrera E et al (2013) Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signal Behav 8:e26998. https://doi.org/10.4161/psb.26998 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Porfírio S, Gomes da Silva MDR, Peixe A et al (2016) Current analytical methods for plant auxin quantification—a review. Anal Chim Acta 902:8–21. https://doi.org/10.1016/j.aca.2015.10.035 CrossRefGoogle Scholar
  14. 14.
    Ulmasov T, Murfett J, Hagen G et al (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971. https://doi.org/10.1105/tpc.9.11.1963 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liao CY, Smet W, Brunoud G et al (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat Meth 12:207–210. https://doi.org/10.1038/nmeth.3279 CrossRefGoogle Scholar
  16. 16.
    Petersson SV, Johansson AI, Kowalczyk M et al (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668. https://doi.org/10.1105/tpc.109.066480 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brunoud G, Wells DM, Oliva M et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106. https://doi.org/10.1038/nature10791 CrossRefPubMedGoogle Scholar
  18. 18.
    Rodríguez-Sanz H, Solís MT, López MF et al (2015) Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol 56:1401–1417. https://doi.org/10.1093/pcp/pcv058 CrossRefPubMedGoogle Scholar
  19. 19.
    Nishimura T, Toyooka K, Sato M et al (2011) Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal Behav 6:2013–2022. https://doi.org/10.4161/psb.6.12.18080 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hakman I, Hallberg H, Palovaara J (2009) The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496. https://doi.org/10.1093/treephys/tpn048 CrossRefPubMedGoogle Scholar
  21. 21.
    Nic-Can GI, Hernández-Castellano S, Kú-González A et al (2013) An efficient immunodetection method for histone modifications in plants. Plant Meth 9:47. https://doi.org/10.1186/1746-4811-9-47 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruth E. Márquez-López
    • 1
  • Ángela Ku-González
    • 1
  • Hugo A. Méndez-Hernández
    • 1
  • Rosa M. Galaz-Ávalos
    • 1
  • Víctor M. Loyola-Vargas
    • 1
  1. 1.Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations