Advertisement

High-Resolution Atomic Force Microscopy Imaging of Nucleic Acids

  • Pablo Ares
  • Julio Gomez-Herrero
  • Fernando Moreno-HerreroEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1814)

Abstract

Exploring the limits of spatial resolution has been a constant in the history of atomic force microscopy imaging. Since its invention in 1986, the AFM has beaten the barrier of resolution continuously, thanks to technical developments, miniaturization of tips, and implementation of new imaging modes. The double helix structure of DNA has been always at the horizon of resolution. Today, this milestone has been reached, not only imaging DNA but also its close relative double-stranded RNA. Here, we provide a comprehensive description of the methods employed and the steps required to image the helical periodicity of these two nucleic acids with the sample immersed in a buffer solution.

Key words

Atomic force microscopy Double-stranded DNA Double-stranded RNA AFM imaging methods 

Notes

Acknowledgments

We thank E. Herrero-Galan and C. Aicart for providing details of the protocol for dsRNA and dsDNA fabrication and A. Gil for critical reading of the manuscript. We thank the financial support from the Spanish MINECO/FEDER (projects MAT2016-77608-C3-3-P and The “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0377) to J.G.-H. and FIS2014-58328-P to F.M.-H.). F.M.-H. also acknowledges support from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation (grant agreement No 681299).

References

  1. 1.
    Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7(2):1817–1822. https://doi.org/10.1021/nn400071n CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. https://doi.org/10.1002/smll.201400265 CrossRefPubMedGoogle Scholar
  3. 3.
    Ares P, Fuentes-Perez ME, Herrero-Galan E, Valpuesta JM, Gil A, Gomez-Herrero J, Moreno-Herrero F (2016) High resolution atomic force microscopy of double-stranded RNA. Nanoscale 8(23):11818–11826. https://doi.org/10.1039/c5nr07445b CrossRefPubMedGoogle Scholar
  4. 4.
    Mou J, Czajkowsky DM, Zhang Y, Shao Z (1995) High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett 371(3):279–282CrossRefPubMedGoogle Scholar
  5. 5.
    Maaloum M, Beker AF, Muller P (2011) Secondary structure of double-stranded DNA under stretching: elucidation of the stretched form. Phys Rev E Stat Nonlinear Soft Matter Phys 83(3 Pt 1):031903CrossRefGoogle Scholar
  6. 6.
    Kitazawa M, Ito S, Yagi A, Sakay N, Uekusa Y, Ohta R, Inaba K, Hayashi A, Hayashi Y, Tanemura M (2011) High-resolution imaging of plasmid DNA in liquids in dynamic mode atomic force microscopy using a carbon nanofiber tip. Jpn J Appl Phys 50(8):S3CrossRefGoogle Scholar
  7. 7.
    Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, Yang J, Drechsler U, Despont M, Jankowski T, Tschope M, Hoogenboom BW (2012) Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett 12(7):3846–3850. https://doi.org/10.1021/nl301857p CrossRefPubMedGoogle Scholar
  8. 8.
    Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47(3):206–213. https://doi.org/10.1016/j.ymeth.2008.09.002 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Cassina V, Manghi M, Salerno D, Tempestini A, Iadarola V, Nardo L, Brioschi S, Mantegazza F (2015) Effects of cytosine methylation on DNA morphology: an atomic force microscopy study. Biochim Biophys Acta 1860(1 Pt A):1–7. https://doi.org/10.1016/j.bbagen.2015.10.006 CrossRefGoogle Scholar
  10. 10.
    Marti O, Drake B, Hansma PK (1987) Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl Phys Lett 51(7):484–486CrossRefGoogle Scholar
  11. 11.
    Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, Mateu MG, Carrascosa JL, Kiracofe D, Melcher J, Raman A (2012) Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS One 7(1):e30204. https://doi.org/10.1371/journal.pone.0030204 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Fukuma T, Jarvis SP (2006) Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions. Rev Sci Instrum 77:043701CrossRefGoogle Scholar
  13. 13.
    Yamada H, Kobayashi K, Fukuma T, Hirata Y, Kajita T, Matsushige K (2009) Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy. Appl Phys Express 2(9):095007CrossRefGoogle Scholar
  14. 14.
    Jaafar M, Martinez-Martin D, Cuenca M, Melcher J, Raman A, Gomez-Herrero J (2012) Drive-amplitude-modulation atomic force microscopy: from vacuum to liquids. Beilstein J Nanotechnol 3:336–344. https://doi.org/10.3762/bjnano.3.38 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923CrossRefGoogle Scholar
  16. 16.
    Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226. https://doi.org/10.1038/nnano.2012.38 CrossRefPubMedGoogle Scholar
  17. 17.
    Pittenger BB, Erina N (2012) Application note #128. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. Bruker, Santa Barbara, CAGoogle Scholar
  18. 18.
    de Pablo PJ, Colchero J, Gómez-Herrero J, Baro AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302CrossRefGoogle Scholar
  19. 19.
    Ortega-Esteban A, Horcas I, Hernando-Perez M, Ares P, Perez-Berna AJ, San Martin C, Carrascosa JL, de Pablo PJ, Gomez-Herrero J (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61. https://doi.org/10.1016/j.ultramic.2012.01.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Rosa-Zeise A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8:1333–1338CrossRefGoogle Scholar
  21. 21.
    Kiracofe D, Kobayashi K, Labuda A, Raman A, Yamada H (2011) High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids. Rev Sci Instrum 82(1):013702. https://doi.org/10.1063/1.3518965 CrossRefPubMedGoogle Scholar
  22. 22.
    Han W, Lindsay SM, Jing T (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69(26):4111–4113CrossRefGoogle Scholar
  23. 23.
    Carrasco C, Ares P, de Pablo PJ, Gomez-Herrero J (2008) Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid. Rev Sci Instrum 79(12):126106. https://doi.org/10.1063/1.3053369 CrossRefPubMedGoogle Scholar
  24. 24.
    Dekker NH, Abels JA, Veenhuizen PT, Bruinink MM, Dekker C (2004) Joining of long double-stranded RNA molecules through controlled overhangs. Nucleic Acids Res 32(18):e140. https://doi.org/10.1093/nar/gnh138 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Herrero-Galan E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR (2013) Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 135(1):122–131. https://doi.org/10.1021/ja3054755 CrossRefPubMedGoogle Scholar
  26. 26.
    Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045CrossRefGoogle Scholar
  27. 27.
    Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7CrossRefGoogle Scholar
  28. 28.
    Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64CrossRefGoogle Scholar
  29. 29.
    Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72(20):2613–1615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pablo Ares
    • 1
  • Julio Gomez-Herrero
    • 1
    • 2
  • Fernando Moreno-Herrero
    • 3
    Email author
  1. 1.Department of Condensed Matter PhysicsUniversidad Autónoma de MadridMadridSpain
  2. 2.Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  3. 3.Department of Macromolecular StructuresCentro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations