Advertisement

Identifying Target RNAs of PARPs

  • Florian J. Bock
  • Paul Chang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)

Abstract

Posttranscriptional regulation of RNA is an important component of gene expression by controlling the total amount of mRNA available for translation into protein. It involves multiple pathways including nuclear processing of mRNA and its precursors, RNA silencing, and regulation of RNA decay. Poly(ADP-ribose) polymerases (PARPs), enzymes that modify target proteins with ADP-ribose, play important roles in several RNA-regulatory pathways. RNA-binding PARPs target specific transcripts for regulation, and multiple PARPs ADP-ribosylate RNA-regulatory proteins to alter their localization, activity, or RNA binding. Additionally, RNA-binding proteins can bind directly to poly(ADP-ribose) with various effects on their function. Here we describe methods to identify and confirm specific transcripts that are regulated by PARPs.

Key words

ADP-ribosylation RNAseq RNA PARP 

Notes

Acknowledgments

This work was partially supported by Cancer Center Support (core; grant P30-CA14051) and RO1GM087465 from the National Institutes of Health to PC. FJB was funded by a Ludwig Postdoctoral Fellowship.

References

  1. 1.
    Gibson BA, Kraus LW (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Bio 13:411–424CrossRefGoogle Scholar
  2. 2.
    Bock F, Chang P (2016) New directions in poly(ADP-ribose) polymerase biology. FEBS J 283:4017–4031CrossRefGoogle Scholar
  3. 3.
    Vyas S, Chang P (2014) New PARP targets for cancer therapy. Nat Rev Cancer 14(7):502–509CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Vyas S, Matic I, Uchima L et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bock F, Todorova T, Chang P (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol Cell 58:959–969CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chen S, Xu Y, Zhang K et al (2012) Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat Struct Mol Biol 19(4):430–435CrossRefGoogle Scholar
  7. 7.
    Iqbal BM, Johns M, Cao J et al (2014) PARP-14 combines with tristetraprolin in the selective posttranscriptional control of macrophage tissue factor expression. Blood 124:3646–3655CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Todorova T, Bock FJ, Chang P (2015) Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. Trends Mol Med 21:373–384CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367–373CrossRefGoogle Scholar
  10. 10.
    Zhu Y, Chen G, Lv F et al (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci 108:15834–15839CrossRefGoogle Scholar
  11. 11.
    Mao R, Nie H, Cai D et al (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9:e1003494CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Goodier JL, Pereira GC, Cheung LE et al (2015) The broad-Spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet 11:e1005252CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Todorova T, Bock FJ, Chang P (2014) PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun 5:5362CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Atasheva S, Akhrymuk M, Frolova EI, Frolov I (2012) New PARP gene with an anti-alphavirus function. J Virol 86:8147–8160CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88:2116–2130CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yamada T, Horimoto H, Kameyama T et al (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 17:687–694CrossRefGoogle Scholar
  17. 17.
    Lee H, Komano J, Saitoh Y et al (2013) Zinc-finger antiviral protein mediates retinoic acid inducible gene I–like receptor-independent antiviral response to murine leukemia virus. Proc Natl Acad Sci 110:12379–12384CrossRefGoogle Scholar
  18. 18.
    Hayakawa S, Shiratori S, Yamato H et al (2010) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12:37–44CrossRefGoogle Scholar
  19. 19.
    Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798CrossRefGoogle Scholar
  20. 20.
    Moldovan JB, Moran JV (2015) The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet 11:1–34CrossRefGoogle Scholar
  21. 21.
    Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci 104:151–156CrossRefGoogle Scholar
  22. 22.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ramsköld D, Kavak E, Sandberg R (2012) How to analyze gene expression using RNA-sequencing data. Methods Mol Biol 802:259–274CrossRefGoogle Scholar
  25. 25.
    Finotello F, Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 14:130–142CrossRefGoogle Scholar
  26. 26.
    Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 11:951–969Google Scholar
  27. 27.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550CrossRefGoogle Scholar
  28. 28.
    Huang D, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefGoogle Scholar
  29. 29.
    Frank E-S, Glazko GV (2011) Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol 7:e1002053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Florian J. Bock
    • 1
  • Paul Chang
    • 2
    • 3
  1. 1.Cancer Research UK Beatson Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
  2. 2.Department of Biology, Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Ribon TherapeuticsLexingtonUSA

Personalised recommendations