Advertisement

Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry

  • Robert Lyle McPherson
  • Shao-En Ong
  • Anthony K. L. Leung
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)

Abstract

ADP-ribosylation is a posttranslational modification that involves the conjugation of monomers and polymers of the small molecule ADP-ribose onto amino acid side chains. A family of ADP-ribosyltransferases catalyzes the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD+) onto a variety of amino acid side chains including aspartate, glutamate, lysine, arginine, cysteine, and serine. The monomeric form of the modification mono(ADP-ribosyl)ation (MARylation) is reversed by a number of enzymes including a family of MacroD-type macrodomain-containing mono(ADP-ribose) (MAR) hydrolases. Though it has been inferred from various chemical tests that these enzymes have specificity for MARylated aspartate and glutamate residues in vitro, the amino acid and site specificity of different family members are often not unambiguously defined. Here we describe a mass spectrometry-based assay to determine the site specificity of MAR hydrolases in vitro.

Key words

ADP-ribosylation Mass spectrometry Macrodomain ADP-ribosylhydrolase 

References

  1. 1.
    Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126. https://doi.org/10.1101/gad.291518.116 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. https://doi.org/10.1038/ncomms5426 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Leidecker O, Bonfiglio JJ, Colby T, Zhang Q, Atanassov I, Zaja R et al (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 12(12):998–1000. https://doi.org/10.1038/nchembio.2180 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219. https://doi.org/10.1016/j.tibs.2009.12.003 CrossRefGoogle Scholar
  5. 5.
    Daniels CM, Ong S-E, Leung AKL (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58:911–924. https://doi.org/10.1016/j.molcel.2015.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Denu JM (2005) The Sir2 family of protein deacetylases. Curr Opin Chem Biol 9:431–440. https://doi.org/10.1016/j.cbpa.2005.08.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238. https://doi.org/10.1038/nrm3293 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Di Girolamo M, Dani N, Stilla A, Corda D (2005) Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J 272:4565–4575. https://doi.org/10.1111/j.1742-4658.2005.04876.x CrossRefPubMedGoogle Scholar
  9. 9.
    Gregor J, Rack M, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Ann Rev Biochem 85:431–454. https://doi.org/10.1146/annurev-biochem-060815-014935 CrossRefGoogle Scholar
  10. 10.
    Palazzo L, Mikoč A, Ahel I (2017) ADP-RIBOSYLATION: new facets of an ancient modification. FEBS J 284(18):2932–2946. https://doi.org/10.1111/febs.14078 CrossRefPubMedGoogle Scholar
  11. 11.
    Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G et al (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20:508–514. https://doi.org/10.1038/nsmb.2523 CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenthal F, Feijs KLH, Frugier E, Bonalli M, Forst AH, Imhof R et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20:502–507. https://doi.org/10.1038/nsmb.2521 CrossRefPubMedGoogle Scholar
  13. 13.
    Li C, Debing Y, Jankevicius G, Neyts J, Ahel I, Coutard B et al (2016) Viral macro domains reverse protein ADP-ribosylation. J Virol 90(19):8478–8486. https://doi.org/10.1128/JVI.00705-16 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J (2016) The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute. 7:1–12. https://doi.org/10.1128/mBio.01721-16.Editor
  15. 15.
    McPherson RL, Abraham R, Sreekumar E, Ong S-E, Cheng S-J, Baxter VK et al (2017) ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl Acad Sci 114(7):1666–1671. https://doi.org/10.1073/PNAS.1621485114 CrossRefPubMedGoogle Scholar
  16. 16.
    Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B et al (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep 7:41746. https://doi.org/10.1038/srep41746 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haikarainen T, Lehtiö L (2016) Proximal ADP-ribose hydrolysis in trypanosomatids is catalyzed by a macrodomain. Sci Rep 6:24213. https://doi.org/10.1038/srep24213 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zapata-Pérez R, Gil-Ortiz F, Martínez-Moñino AB, García-Saura AG, Juanhuix J, Sánchez-Ferrer Á (2017) Structural and functional analysis of Oceanobacillus iheyensis macrodomain reveals a network of waters involved in substrate binding and catalysis. Open Biol 7:160327. https://doi.org/10.1098/rsob.160327 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marjanovic MP, Palazzo L, Perina D, Sabljic I, Roko Z, Colby T et al (2016) Disruption of macrodomain protein SCO6735 increases antibiotic production in streptomyces coelicolor*. J Biol Chem 291:23175–23187. https://doi.org/10.1074/jbc.M116.721894 CrossRefGoogle Scholar
  20. 20.
    Rack JGM, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y et al (2015) Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol Cell 59:309–320. https://doi.org/10.1016/j.molcel.2015.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Feijs KLH, Forst AH, Verheugd P, Lüscher B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14:443–451. https://doi.org/10.1038/nrm3601 CrossRefPubMedGoogle Scholar
  22. 22.
    Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G (2013) The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280:3491–3507. https://doi.org/10.1111/febs.12358 CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Wang J, Ding M, Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10:981–984. https://doi.org/10.1038/nmeth.2603 CrossRefPubMedGoogle Scholar
  24. 24.
    Martello R, Leutert M, Jungmichel S, Bilan V, Larsen SC, Young C et al (2016) ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:1–13. https://doi.org/10.1038/ncomms12917 CrossRefGoogle Scholar
  25. 25.
    Daniels CM, Ong SE, Leung AKL (2014) Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 13:3510–3522. https://doi.org/10.1021/pr401032q CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Palazzo L, Thomas B, Jemth A-S, Colby T, Leidecker O, Feijs KLH et al (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468:293–301. https://doi.org/10.1042/BJ20141554 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong S-E et al (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283(18):3371–3388. https://doi.org/10.1111/febs.13811 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rosenthal F, Nanni P, Barkow-Oesterreicher S, Hottiger MO (2015) Optimization of LTQ-Orbitrap mass spectrometer parameters for the identification of ADP-ribosylation sites. J Proteome Res 14(9):4072–4079. https://doi.org/10.1021/acs.jproteome.5b00432 CrossRefPubMedGoogle Scholar
  29. 29.
    Bilan V, Leutert M, Nanni P, Panse C, Hottiger MO (2017) Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteome wide ADP-ribose acceptor sites. Anal Chem. https://doi.org/10.1021/acs.analchem.6b03365
  30. 30.
    Daniels CM, Thirawatananond P, Ong S-E, Gabelli SB, Leung AKL (2015) Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 5:18271. https://doi.org/10.1038/srep18271 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I et al (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell 65(5):932–940.e6. https://doi.org/10.1016/j.molcel.2017.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chapman JD, Gagné JP, Poirier GG, Goodlett DR (2013) Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J Proteome Res 12:1868–1880. https://doi.org/10.1021/pr301219h CrossRefPubMedGoogle Scholar
  33. 33.
    Mashimo M, Kato J, Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23:88–94. https://doi.org/10.1016/j.dnarep.2014.03.005 CrossRefGoogle Scholar
  34. 34.
    Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM et al (2011) Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J Biol Chem 286:35955–35965. https://doi.org/10.1074/jbc.M111.276238 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Proto 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261 CrossRefGoogle Scholar
  36. 36.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robert Lyle McPherson
    • 1
  • Shao-En Ong
    • 2
  • Anthony K. L. Leung
    • 1
    • 3
    • 4
  1. 1.Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of PharmacologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Molecular Biology and GeneticsJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations