Advertisement

Mono-ADP-Ribosylhydrolase Assays

  • Jeannette Abplanalp
  • Ann-Katrin Hopp
  • Michael O. Hottiger
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)

Abstract

Despite substantial progress in ADP-ribosylation research in recent years, the identification of ADP-ribosylated proteins, their ADP-ribose acceptors sites, and the respective writers and erasers remains challenging. The use of recently developed mass spectrometric methods helps to further characterize the ADP-ribosylome and its regulatory enzymes under different conditions and in different cell types. Validation of these findings may be achieved by in vitro assays for the respective enzymes. In the below method, we describe how recombinant ADP-ribosylated proteins are demodified in vitro with mono-ADP-ribosylhydrolases of choice to elucidate substrate and potentially also site specificity of these enzymes.

Key words

Mono-ADP-ribosylhydrolases Macrodomain De-ADP-ribosylation assay PARG MACROD2 MACROD1 ARH1 ARH3 TARG OARD1 C6ORF130 

Notes

Acknowledgments

The authors would like to thank Tobias Suter (University of Zurich) for providing editorial assistance and critical input during manuscript writing. Work on ADP-ribosyltransferases and hydrolases in the laboratory of MOH is supported by the Kanton of Zurich and the Swiss National Science Foundation (SNF 310030_157019 and 31003A_176177).

References

  1. 1.
    Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263CrossRefPubMedGoogle Scholar
  2. 2.
    Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946CrossRefPubMedGoogle Scholar
  4. 4.
    Caldecott KW (2014) Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair 19:108–113CrossRefPubMedGoogle Scholar
  5. 5.
    Butepage M et al (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cell 4(4):569–595CrossRefGoogle Scholar
  6. 6.
    Laing S et al (2011) ADP-ribosylation of arginine. Amino Acids 41(2):257–269CrossRefPubMedGoogle Scholar
  7. 7.
    Du J, Jiang H, Lin H (2009) Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 48(13):2878–2890CrossRefPubMedGoogle Scholar
  8. 8.
    Pan PW et al (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286(16):14575–14587CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ueda K et al (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46(2):516–523CrossRefPubMedGoogle Scholar
  10. 10.
    Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713CrossRefPubMedGoogle Scholar
  11. 11.
    Moss J, Jacobson MK, Stanley SJ (1985) Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc Natl Acad Sci U S A 82(17):5603–5607CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kato J et al (2011) ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res 71(15):5327–5335CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jankevicius G et al (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenthal F et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507CrossRefPubMedGoogle Scholar
  15. 15.
    Sharifi R et al (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32(9):1225–1237CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xi HQ, Zhao P, Han WD (2010) Clinicopathological significance and prognostic value of LRP16 expression in colorectal carcinoma. World J Gastroenterol 16(13):1644–1648CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mohseni M et al (2014) MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. Proc Natl Acad Sci U S A 111(49):17606–17611CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zang L et al (2013) Identification of LRP16 as a negative regulator of insulin action and adipogenesis in 3T3-L1 adipocytes. Horm Metab Res 45(5):349–358CrossRefPubMedGoogle Scholar
  19. 19.
    Han WD et al (2007) Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor’s transcriptional activity. Endocr Relat Cancer 14(3):741–753CrossRefPubMedGoogle Scholar
  20. 20.
    Yang J et al (2009) The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr Relat Cancer 16(1):139–153CrossRefPubMedGoogle Scholar
  21. 21.
    Wu Z et al (2011) LRP16 integrates into NF-kappaB transcriptional complex and is required for its functional activation. PLoS One 6(3):e18157CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Abplanalp J et al (2017) Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat Commun 8(1):2055CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fontana P et al (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. elife 6:e28533Google Scholar
  24. 24.
    Martello R et al (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bilan V et al (2017) Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteomewide ADP-ribose acceptor sites. Anal Chem 89(3):1523–1530CrossRefPubMedGoogle Scholar
  26. 26.
    Leidecker O et al (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 12(12):998CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jeannette Abplanalp
    • 1
    • 2
  • Ann-Katrin Hopp
    • 1
    • 2
  • Michael O. Hottiger
    • 1
  1. 1.Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
  2. 2.Molecular Life Science PhD Program of the Life Science Zurich Graduate SchoolZurichSwitzerland

Personalised recommendations