Vitamin B3 in Health and Disease: Toward the Second Century of Discovery

  • Myron K. JacobsonEmail author
  • Elaine L. Jacobson
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)


This introductory chapter briefly reviews the history, chemistry, and biochemistry of NAD (the term NAD as it is used here refers to both oxidized and reduced forms of the molecule) consuming ADP-ribose transfer enzymes as components of the involvement of vitamin B3 in health and disease.

Key words

Pellagra Vitamin B3 Nicotinic acid Nicotinamide Nicotinamide riboside ADP-ribose 


  1. 1.
    Harden A, Young WJ (1906) The alcoholic fermentation of yeast-juice. Proc R Soc Lond B Biol Sci 77:405–420CrossRefGoogle Scholar
  2. 2.
    Etheridge EW (1972) The butterfly caste: a social history of pellagra in the South. Greenwood Publishing Company, WestportGoogle Scholar
  3. 3.
    Elvehjem CA et al (1937) Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J Am Chem Soc 59(9):1767–1768CrossRefGoogle Scholar
  4. 4.
    Schlenk F (1984) The dawn of nicotinamide coenzyme research. Trends Biochem Sci 9(6):286–288CrossRefGoogle Scholar
  5. 5.
    Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43CrossRefGoogle Scholar
  6. 6.
    Nishizuka Y et al (1967) Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242(13):3164–3171PubMedGoogle Scholar
  7. 7.
    Fujimura S et al (1967) Polymerization of the adenosine 5′-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim Biophys Acta 145(2):247–259CrossRefGoogle Scholar
  8. 8.
    Goor RS, Pappenheimer AM Jr, Ames E (1967) Studies on the mode of action of diphtheria toxin. V. Inhibition of peptide bond formation by toxin and NAD in cell-free systems and its reversal by nicotinamide. J Exp Med 126(5):923–939CrossRefGoogle Scholar
  9. 9.
    Moss J, Stanley SJ (1981) Amino acid-specific ADP-ribosylation. Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256(15):7830–7833PubMedGoogle Scholar
  10. 10.
    Clapper DL et al (1987) Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262(20):9561–9568PubMedGoogle Scholar
  11. 11.
    Vaziri H et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159CrossRefGoogle Scholar
  12. 12.
    Bieganowski P, Brenner C (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117(4):495–502CrossRefGoogle Scholar
  13. 13.
    Fu CS et al (1989) Biochemical markers for assessment of niacin status in young men: levels of erythrocyte niacin coenzymes and plasma tryptophan. J Nutr 119(12):1949–1955CrossRefGoogle Scholar
  14. 14.
    Dolle C et al (2013) NAD biosynthesis in humans—enzymes, metabolites and therapeutic aspects. Curr Top Med Chem 13(23):2907–2917CrossRefGoogle Scholar
  15. 15.
    Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350(6265):1208–1213CrossRefGoogle Scholar
  16. 16.
    Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53CrossRefGoogle Scholar
  17. 17.
    Kraus WL (2015) PARPs and ADP-Ribosylation: 50 years … and counting. Mol Cell 58(6):902–910CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of North Texas System College of Pharmacy, University of North Texas Health Science CenterFort WorthUSA
  2. 2.Niadyne Pharma, Inc.Fort WorthUSA

Personalised recommendations