Advertisement

Loading of PNA and Other Molecular Payloads on Inorganic Nanostructures for Theranostics

  • Alessandro Bertucci
  • Simone Silvestrini
  • Roberto Corradini
  • Luisa De ColaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1811)

Abstract

Peptide Nucleic Acids (PNAs) are oligonucleotide mimics that can be used as drugs as they can interact with DNA and RNA targets in organisms. Loading PNAs into inorganic nanocarriers can improve their cellular uptake and co-delivering them together with drugs can improve the therapy efficacy by synergic effects. Furthermore, the functionalization of the carriers with labels allows theranostics, and the possibility to monitor the efficacy of the therapy in real time. The present protocol describes the synthesis of Zeolites-L nanocrystals and mesoporous silica nanoparticles and their loading with cationic PNAs and other smaller molecular weight payloads towards theranostics applications.

Key words

PNA Zeolites Mesoporous silica nanoparticles Nanomedicine Drug delivery 

Notes

Acknowledgments

This work was partially supported by MIUR PRIN09 grant (20093N774P_001), as well as by the French embassy in Italy and the French government through a MAEE grant for scientific cooperation between Italy and France (no. 778588G).

References

  1. 1.
    Baltimore D (1988) Gene therapy: intracellular immunization. Nature 335:395–396CrossRefGoogle Scholar
  2. 2.
    Anderson WF (1992) Human gene therapy. Science 256:808–813CrossRefGoogle Scholar
  3. 3.
    Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977CrossRefGoogle Scholar
  4. 4.
    Nielsen P (2004) PNA technology. Mol Biotechnol 26:233–248CrossRefGoogle Scholar
  5. 5.
    Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109:E1695–E1704CrossRefGoogle Scholar
  6. 6.
    Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu Y-C, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM (2016) In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat Commun 7:13304CrossRefGoogle Scholar
  7. 7.
    Lülf H, Bertucci A, Septiadi D, Corradini R, De Cola L (2014) Multifunctional inorganic nanocontainers for DNA and drug delivery into living cells. Chem Eur J 20:10900–10904CrossRefGoogle Scholar
  8. 8.
    Bertucci A, Lülf H, Septiadi D, Manicardi A, Corradini R, De Cola L (2014) Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals. Adv Healthc Mater 1–6Google Scholar
  9. 9.
    Bertucci A (2015) Hybrid organic-inorganic interfaces for biomedical applications. Ph.D. thesis, University of Parma (Italy) and Strasbourg (France)Google Scholar
  10. 10.
    Zhang Q, Wang X, Li PZ, Nguyen KT, Wang XJ, Luo Z, Zhang H, Tan NS, Zhao Y (2014) Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 24:2450–2461CrossRefGoogle Scholar
  11. 11.
    Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143CrossRefGoogle Scholar
  12. 12.
    Kruk M, Cao L (2007) Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane. Langmuir 23:7247–7254CrossRefGoogle Scholar
  13. 13.
    Möller K, Müller K, Engelke H, Bräuchle C, Wagner E, Bein T (2016) Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale 8:4007–4019CrossRefGoogle Scholar
  14. 14.
    Bertucci A, Prasetyanto EA, Septiadi D, Manicardi A, Brognara E, Gambari R, Corradini R, De Cola L (2015) Combined delivery of Temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small 11:5687–5695CrossRefGoogle Scholar
  15. 15.
    Chang J-H, Tsai P-H, Chen W, Chiou S-H, Mou C-Y (2017) Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. J Mater Chem B 5:3012–3023CrossRefGoogle Scholar
  16. 16.
    Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:7240–7247CrossRefGoogle Scholar
  17. 17.
    Prasetyanto EA, Bertucci A, Septiadi D, Corradini R, Castro-Hartmann P, De Cola L (2016) Breakable hybrid organosilica nanocapsules for protein delivery. Angew Chem Int Ed 55:3323–3327CrossRefGoogle Scholar
  18. 18.
    Ruiz AZ, Brühwiler D, Ban T, Calzaferri G (2005) Synthesis of zeolite L. tuning size and morphology. Monatsh Chem 136:77–89CrossRefGoogle Scholar
  19. 19.
    Croissant J, Cattoën X, Man MWC, Gallud A, Raehm L, Trens P, Maynadier M, Durand JO (2014) Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Adv Mater 26:6174–6180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Bertucci
    • 1
  • Simone Silvestrini
    • 1
  • Roberto Corradini
    • 2
  • Luisa De Cola
    • 1
    Email author
  1. 1.Institut de Science et d’Ingénierie Supramoléculaires (ISIS) Université de StrasbourgStrasbourgFrance
  2. 2.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly

Personalised recommendations