Air–Liquid Interface Culture of Human and Mouse Airway Epithelial Cells

  • Di Jiang
  • Niccolette Schaefer
  • Hong Wei ChuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1809)


Air–liquid interface culture enables airway epithelial cells to differentiate into a pseudostratified cell layer, consisting of ciliated cells, goblet/secretory cells, and basal cells (Ghio et al., Part Fibre Toxicol 10:25, 2013). This technique is critically important for in vitro studies of lung diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, since differentiated airway epithelial cells are more representative of the in vivo lung environment than non-differentiated cells (Derichs et al., FASEB J 25:2325–2332, 2011; Hackett et al., Am J Respir Cell Mol Biol 45:1090–1100, 2011;Schneider et al., Am J Respir Crit Care Med 182: 332–340, 2010). Here we describe the process of isolating and expanding human and mouse airway epithelial cells, as well as differentiation of airway epithelial cells by air–liquid interface culture.

Key words

Air–liquid interface Airway epithelial cells Cell differentiation 



The authors thank Max A. Seibold, Reem Al Mubarak, Nicole Roberts, and Reena Berman for their technical assistance in cell culture methodology.


  1. 1.
    Ghio AJ, Dailey LA, Soukup JM, Stonehuerner J, Richards JH, Devlin RB (2013) Growth of human bronchial epithelial cells at an air–liquid interface alters the response to particle exposure. Part Fibre Toxicol 10:25CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS (2011) Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J 25:2325–2332CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hackett TL, Singhera GK, Shaheen F, Hayden P, Jackson GR, Hegele RG et al (2011) Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am J Respir Cell Mol Biol 45:1090–1100CrossRefPubMedGoogle Scholar
  4. 4.
    Schneider D, Ganesan S, Comstock AT, Meldrum CA, Mahidhara R, Goldsmith AM et al (2010) Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:332–340CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH (2005) Well-differentiated human airway epithelial cell cultures. Methods Mol Med 107:183–206PubMedGoogle Scholar
  6. 6.
    Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG (2011) The air–liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol 300:L25–L31CrossRefPubMedGoogle Scholar
  7. 7.
    Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S (2017) Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 47:161–175CrossRefPubMedGoogle Scholar
  8. 8.
    Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Davidson DJ, Gray MA, Kilanowski FM, Tarran R, Randell SH, Sheppard DN et al (2004) Murine epithelial cells: isolation and culture. J Cyst Fibros 3(Suppl 2):59–62CrossRefPubMedGoogle Scholar
  10. 10.
    Horani A, Dickinson JD, Brody SL (2013) Applications of mouse airway epithelial cell culture for asthma research. Methods Mol Biol 1032:91–107CrossRefPubMedGoogle Scholar
  11. 11.
    You Y, Richer EJ, Huang T, Brody SL (2002) Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol 283:L1315–L1321CrossRefPubMedGoogle Scholar
  12. 12.
    Qin Y, Jiang Y, Sheikh AS, Shen S, Liu J, Jiang D (2016) Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. Int Immunopharmacol 40:106–114CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineNational Jewish HealthDenverUSA

Personalised recommendations