Advertisement

Mouse Models of Asthma

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1809)

Abstract

Mouse models are critical for delineating the mechanisms that underlie asthma pathogenesis and developing new treatments. In this chapter we describe four different asthma models that offer unique benefits and allow investigators to answer distinct research questions. We also describe key surgical procedures that are necessary for assessing experimental asthma.

Key words

Mouse model Experimental asthma Allergen Immunization Lung Bronchoalveolar lavage 

Notes

Acknowledgments

This work was supported by the National Institutes of Health grant R01HL122995 to M.M.G.

References

  1. 1.
    Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368:804–813CrossRefGoogle Scholar
  2. 2.
    Kim HY, Umetsu DT, Dekruyff RH (2016) Innate lymphoid cells in asthma: will they take your breath away? Eur J Immunol 46:795–806CrossRefGoogle Scholar
  3. 3.
    Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43:29–40CrossRefGoogle Scholar
  4. 4.
    Saglani S, Lloyd CM (2015) Novel concepts in airway inflammation and remodelling in asthma. Eur Respir J 46:1796–1804CrossRefGoogle Scholar
  5. 5.
    Kanehiro A, Lahn M, Mäkelä MJ et al (2001) Tumor necrosis factor-alpha negatively regulates airway hyperresponsiveness through gamma-delta T cells. Am J Respir Crit Care Med 164:2229–2238CrossRefGoogle Scholar
  6. 6.
    Stafford S, Li H, Forsythe PA et al (1997) Monocyte chemotactic protein-3 (MCP-3)/fibroblast-induced cytokine (FIC) in eosinophilic inflammation of the airways and the inhibitory effects of an anti-MCP-3/FIC antibody. J Immunol 158:4953–4960PubMedGoogle Scholar
  7. 7.
    Goplen N, Karim MZ, Liang Q et al (2009) Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol 123:925–32.e11CrossRefGoogle Scholar
  8. 8.
    Plantinga M, Guilliams M, Vanheerswynghels M et al (2013) Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38:322–335CrossRefGoogle Scholar
  9. 9.
    Debeuf N, Haspeslagh E, van Helden M et al (2016) Mouse models of asthma. Curr Protoc Mouse Biol 6:169–184CrossRefGoogle Scholar
  10. 10.
    Birrell MA, Van Oosterhout AJ, Belvisi MG (2010) Do the current house dust mite-driven models really mimic allergic asthma? Eur Respir J 36:1220–1221CrossRefGoogle Scholar
  11. 11.
    Zhou W, Toki S, Zhang J et al (2016) Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am J Respir Crit Care Med 193:31–42CrossRefGoogle Scholar
  12. 12.
    O’Hollaren MT, Yunginger JW, Offord KP et al (1991) Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 324:359–363CrossRefGoogle Scholar
  13. 13.
    Bartemes KR, Iijima K, Kobayashi T et al (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513CrossRefGoogle Scholar
  14. 14.
    Christianson CA, Goplen NP, Zafar I et al (2015) Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol 136:59–68.e14CrossRefGoogle Scholar
  15. 15.
    Takeda K, Haczku A, Lee JJ et al (2001) Strain dependence of airway hyperresponsiveness reflects differences in eosinophil localization in the lung. Am J Physiol Lung Cell Mol Physiol 281:L394–L402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Allergy and Clinical Immunology, Department of MedicineNational Jewish HealthDenverUSA
  2. 2.University of ColoradoAuroraUSA

Personalised recommendations