Advertisement

Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches

  • Alexandra L. McCubbrey
  • William J. Janssen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1809)

Abstract

Transgenic mice have emerged as a central tool in the study of lung myeloid cells during homeostasis and disease. The use of Cre/Lox site-specific recombination allows for conditional deletion of a gene of interest in a spatially controlled manner. The basic Cre/Lox system can be further refined to include an inducible trigger, enabling conditional deletion of a gene of interest in a spatially and temporally controlled manner. Here we provide an overview of commercially available conditional and inducible conditional mouse strains that target lung myeloid cells and describe the appropriate breeding schemes and controls for transgenic animal systems that can be used to modulate myeloid cell function.

Key words

Transgenic mice Conditional Inducible Cre CreER rtTA Breeding ROSA26 

References

  1. 1.
    Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89(15):6861–6865CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98(3):600–603. https://doi.org/10.1172/jci118828 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang X (2009) Cre transgenic mouse lines. Methods Mol Biol 561:265–273. https://doi.org/10.1007/978-1-60327-019-9_17 CrossRefPubMedGoogle Scholar
  4. 4.
    Miller RL (2011) Transgenic mice: beyond the knockout. Am J Physiol Renal Physiol 300(2):F291–F300. https://doi.org/10.1152/ajprenal.00082.2010 CrossRefPubMedGoogle Scholar
  5. 5.
    Haruyama N, Cho A, Kulkarni AB (2009) Overview: engineering transgenic constructs and mice. Curr Protoc Cell Biol Chapter 19:Unit 19.10. doi:https://doi.org/10.1002/0471143030.cb1910s42 CrossRefGoogle Scholar
  6. 6.
    Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8(4):265–277CrossRefPubMedGoogle Scholar
  7. 7.
    Abram CL, Roberge GL, Hu Y, Lowell CA (2014) Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods 408:89–100. https://doi.org/10.1016/j.jim.2014.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8(7):665–668. https://doi.org/10.1038/ni0707-665 CrossRefPubMedGoogle Scholar
  9. 9.
    Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ (2008) Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205(12):2839–2850. https://doi.org/10.1084/jem.20081430 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363. https://doi.org/10.1007/978-1-59745-471-1_18 CrossRefPubMedGoogle Scholar
  12. 12.
    Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, Whitsett J, Quaggin SE, Nagy A (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 33(5):e51. https://doi.org/10.1093/nar/gni051 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34(3):208–214. https://doi.org/10.1002/gene.10153 CrossRefPubMedGoogle Scholar
  14. 14.
    Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769CrossRefPubMedGoogle Scholar
  15. 15.
    Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lubbert H, Bujard H (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A 93(20):10933–10938CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13(2):121–128CrossRefPubMedGoogle Scholar
  17. 17.
    McCubbrey AL, Barthel L, Mohning MP, Redente EF, Mould KJ, Thomas SM, Leach SM, Danhorn T, Gibbings SL, Jakubzick CV, Henson PM, Janssen WJ (2017) Deletion of c-FLIP from CD11bhi macrophages prevents development of Bleomycin-induced lung fibrosis. Am J Respir Cell Mol Biol 58:66–78. https://doi.org/10.1165/rcmb.2017-0154OC CrossRefGoogle Scholar
  18. 18.
    Kamper MR, Gohla G, Schluter G (2002) A novel positive tetracycline-dependent transactivator (rtTA) variant with reduced background activity and enhanced activation potential. FEBS Lett 517(1–3):115–120CrossRefPubMedGoogle Scholar
  19. 19.
    Koponen JK, Kankkonen H, Kannasto J, Wirth T, Hillen W, Bujard H, Yla-Herttuala S (2003) Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in vitro and in vivo. Gene Ther 10(6):459–466. https://doi.org/10.1038/sj.gt.3301889 CrossRefPubMedGoogle Scholar
  20. 20.
    McCubbrey AL, Barthel L, Mould KJ, Mohning MP, Redente EF, Janssen WJ (2016) Selective and inducible targeting of CD11b+ mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. Am J Physiol Lung Cell Mol Physiol 311(1):L87–l100. https://doi.org/10.1152/ajplung.00141.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, Blackwell TS (2013) Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 49(2):180–189. https://doi.org/10.1165/rcmb.2012-0366MA CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR, Perlman H (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49(4):503–510. https://doi.org/10.1165/rcmb.2013-0086MA CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gibbings SL, Thomas SM, Atif SM, McCubbrey AL, Desch AN, Danhorn T, Leach SM, Bratton DL, Henson PM, Janssen WJ, Jakubzick CV (2017) Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol 57(1):66–76. https://doi.org/10.1165/rcmb.2016-0361OC CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, Henson PM (2011) Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 184(5):547–560. https://doi.org/10.1164/rccm.201011-1891OC CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gibbings SL, Goyal R, Desch AN, Leach SM, Prabagar M, Atif SM, Bratton DL, Janssen W, Jakubzick CV (2015) Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 126(11):1357–1366. https://doi.org/10.1182/blood-2015-01-624809 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281(5):2649–2653. https://doi.org/10.1074/jbc.M512373200 CrossRefPubMedGoogle Scholar
  28. 28.
    Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA, Mills JC (2012) Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142(1):21–24.e27. https://doi.org/10.1053/j.gastro.2011.09.050 CrossRefPubMedGoogle Scholar
  29. 29.
    Morimoto M, Kopan R (2009) rtTA toxicity limits the usefulness of the SP-C-rtTA transgenic mouse. Dev Biol 325(1):171–178. https://doi.org/10.1016/j.ydbio.2008.10.013 CrossRefPubMedGoogle Scholar
  30. 30.
    Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, Orlofsky A, Liu Q, Hume DA, Pollard JW, Augenlicht L, Lin EY (2010) A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176(2):952–967. https://doi.org/10.2353/ajpath.2010.090622 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Loschko J, Rieke GJ, Schreiber HA, Meredith MM, Yao KH, Guermonprez P, Nussenzweig MC (2016) Inducible targeting of cDCs and their subsets in vivo. J Immunol Methods 434:32–38. https://doi.org/10.1016/j.jim.2016.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu X, Briseno CG, Durai V, Albring JC, Haldar M, Bagadia P, Kim KW, Randolph GJ, Murphy TL, Murphy KM (2016) Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J Exp Med 213(12):2553–2565. https://doi.org/10.1084/jem.20160600 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Caton ML, Smith-Raska MR, Reizis B (2007) Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204(7):1653–1664. https://doi.org/10.1084/jem.20062648 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Loschko J, Schreiber HA, Rieke GJ, Esterhazy D, Meredith MM, Pedicord VA, Yao KH, Caballero S, Pamer EG, Mucida D, Nussenzweig MC (2016) Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J Exp Med 213(4):517–534. https://doi.org/10.1084/jem.20160062 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443. https://doi.org/10.1016/j.cell.2004.10.010 CrossRefPubMedGoogle Scholar
  36. 36.
    Ferron M, Vacher J (2005) Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 41(3):138–145. https://doi.org/10.1002/gene.20108 CrossRefPubMedGoogle Scholar
  37. 37.
    Franke K, Kalucka J, Mamlouk S, Singh RP, Muschter A, Weidemann A, Iyengar V, Jahn S, Wieczorek K, Geiger K, Muders M, Sykes AM, Poitz DM, Ripich T, Otto T, Bergmann S, Breier G, Baretton G, Fong GH, Greaves DR, Bornstein S, Chavakis T, Fandrey J, Gassmann M, Wielockx B (2013) HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis. Blood 121(8):1436–1445. https://doi.org/10.1182/blood-2012-08-449181 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Doyle AD, Jacobsen EA, Ochkur SI, Willetts L, Shim K, Neely J, Kloeber J, Lesuer WE, Pero RS, Lacy P, Moqbel R, Lee NA, Lee JJ (2013) Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J Leukoc Biol 94(1):17–24. https://doi.org/10.1189/jlb.0213089 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. https://doi.org/10.1038/nature10138 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pillai MM, Hayes B, Torok-Storb B (2009) Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80- and CSF-1R-expressing populations. Exp Hematol 37(12):1387–1392. https://doi.org/10.1016/j.exphem.2009.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yan C, Lian X, Li Y, Dai Y, White A, Qin Y, Li H, Hume DA, Du H (2006) Macrophage-specific expression of human lysosomal acid lipase corrects inflammation and pathogenic phenotypes in lal−/− mice. Am J Pathol 169(3):916–926. https://doi.org/10.2353/ajpath.2006.051327 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kramnik I (2008) Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods 329(1–2):31–44. https://doi.org/10.1016/j.jim.2007.09.009 CrossRefPubMedGoogle Scholar
  43. 43.
    Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AH, Eichmann A, Wellik D, Ducret S, Rijli FM (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science (New York, NY) 339(6116):204–207. https://doi.org/10.1126/science.1229326 CrossRefGoogle Scholar
  44. 44.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  45. 45.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97(1):324–326CrossRefPubMedGoogle Scholar
  47. 47.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science (New York, NY) 303(5656):359–363. https://doi.org/10.1126/science.1092436 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexandra L. McCubbrey
    • 1
    • 2
  • William J. Janssen
    • 3
    • 4
  1. 1.Department of MedicineNational Jewish HealthDenverUSA
  2. 2.Division of Critical Care Medicine and Pulmonary Sciences, Department of MedicineUniversity of ColoradoDenverUSA
  3. 3.Division of Pulmonary, Critical Care and Sleep Medicine, Department of MedicineNational Jewish HealthDenverUSA
  4. 4.Division of Pulmonary Sciences and Critical Care Medicine, Department of MedicineUniversity of Colorado DenverAuroraUSA

Personalised recommendations