Advertisement

DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data

  • Tobias FrischEmail author
  • Jonatan Gøttcke
  • Richard Röttger
  • Qihua Tan
  • Jan Baumbach
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1807)

Abstract

DNA-methylation has a strong influence on gene expression such that differences in methylation are associated with a wide range of diseases. Array-based approaches like the Illumina 450 K or 850 K EPIC chips have been used in a wide range of studies mostly comparing a disease group with healthy control, but also to correlate with survival times, for instance. Processing, normalization, and analysis of raw data require extensive knowledge in statistics and programming languages such as R. Here we introduce DiMmer, an easy-to-use Java tool for the analysis of EWAS. A graphical user interface guides the user through preprocessing, normalization, testing for differentially methylated CpGs, and finally the discovery of differentially methylated regions (DMRs). The software performs randomization tests to compute empirical P-values, corrects for multiple testing, and requires no prior knowledge in programming. All computed results are provided as plots or tables and can be easily exported. DiMmer is thus a powerful one-stop-shop for EWAS data analysis.

Key words

DNA modification Methylation Epigenetic Epigenome-wide association studies Differentially methylated regions 

Notes

Acknowledgements

Jan Baumbach and Tobias Frisch are grateful for financial support from the VILLUM foundation (Young Investigator Grant nr. 13154).

References

  1. 1.
    Almeida D, Skov I, Silva A, Vandin F, Tan Q, Röttger R, Baumbach J (2016) Efficient detection of differentially methylated regions using dimmer. Bioinformatics 33(4):549–551Google Scholar
  2. 2.
    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30(10):1363–1369CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705CrossRefPubMedGoogle Scholar
  4. 4.
    Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540CrossRefPubMedGoogle Scholar
  5. 5.
    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282CrossRefPubMedGoogle Scholar
  6. 6.
    Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning, corrected edn. Springer, BerlinGoogle Scholar
  7. 7.
    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf 13(1):86CrossRefGoogle Scholar
  8. 8.
    Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15(2):R31CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ji L, Sasaki T, Sun X, Ma P, Lewis ZA, Schmitz RJ (2014) Methylated DNA is over-represented in whole-genome bisulfite sequencing data. Front Genet 5:341CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci 107(7):2926–2931CrossRefPubMedGoogle Scholar
  11. 11.
    Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu Y, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ et al (2003) The UCSC genome browser database. Nucleic Acids Res 31(1):51–54CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
  13. 13.
    Plongthongkum N, Diep DH, Zhang K (2014) Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 15(10):647CrossRefPubMedGoogle Scholar
  14. 14.
    Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT, Marsit CJ, Houseman EA, Brown R (2013) Review of processing and analysis methods for DNA methylation array data. Br J Cancer 109(6):1394CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tobias Frisch
    • 1
    Email author
  • Jonatan Gøttcke
    • 1
  • Richard Röttger
    • 1
  • Qihua Tan
    • 1
  • Jan Baumbach
    • 2
    • 3
  1. 1.University of Southern DenmarkOdenseDenmark
  2. 2.University of Southern DenmarkOdenseDenmark
  3. 3.Technical University of MunichMunichGermany

Personalised recommendations