Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG

  • Minoru KanehisaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1807)


The KEGG database is widely used as a reference knowledge base for biological interpretation of genome sequences and other high-throughput data. It contains, among others, KEGG pathway maps and BRITE hierarchies (ontologies) representing high-level systemic functions of the cell and the organism. By the processes called pathway mapping and BRITE mapping, information encoded in the genome, especially the repertoire of genes, is converted to such high-level functional information. This general methodology can be applied to microbial genomes to infer antimicrobial resistance (AMR), which is becoming an increasingly serious threat to the global public health. Here we present how knowledge on AMR is accumulated in the KEGG Pathogen resource and how such knowledge can be utilized by BlastKOALA and other web tools.

Key words

Beta-lactamase KEGG Orthology (KO) KEGG module Genome annotation BlastKOALA 



This work was partially supported by the National Bioscience Database Center of the Japan Science and Technology Agency. The computational resource for developing and servicing KEGG is provided by the Bioinformatics Center, Institute for Chemical Research, Kyoto University.


  1. 1.
    NCBI Resource Coordinators (2017) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45:D12–D17CrossRefGoogle Scholar
  2. 2.
    Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573CrossRefPubMedGoogle Scholar
  3. 3.
    Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI (2017) Beta-lactamase database (BLDB) – structure and function. J Enzyme Inhib Med Chem 32:917–919CrossRefPubMedGoogle Scholar
  4. 4.
    Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976CrossRefPubMedGoogle Scholar
  5. 5.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361CrossRefPubMedGoogle Scholar
  6. 6.
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462CrossRefGoogle Scholar
  7. 7.
    Hall BG, Barlow M (2005) Revised Ambler classification of beta-lactamases. J Antimicrob Chemother 55:1050–1051CrossRefPubMedGoogle Scholar
  8. 8.
    Evans B, Amyes SG (2014) OXA β-lactamases. Clin Microbiol Rev 27:241–263CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Périchon B, Goussard S, Walewski V, Krizova L, Cerqueira G, Murphy C, Feldgarden M, Wortman J, Clermont D, Nemec A, Courvalin P (2014) Identification of 50 class D β-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp. Antimicrob Agents Chemother 58:936–949CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731CrossRefPubMedGoogle Scholar
  11. 11.
    Kanehisa M (2017) Enzyme annotation and metabolic reconstruction using KEGG. Methods Mol Biol 1611:135–145CrossRefPubMedGoogle Scholar
  12. 12.
    Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Chemical ResearchKyoto UniversityUjiJapan

Personalised recommendations