Advertisement

Progranulin pp 51-64 | Cite as

Large-Scale Generation of Recombinant Granulin Peptides in E. coli

  • Dmitri TolkatchevEmail author
Protocol
  • 538 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1806)

Abstract

Generating milligram quantities of correctly folded granulin molecules with properly formed disulfide bonds and biologically relevant activities may represent a considerable challenge. Here I describe a protocol for obtaining well-folded human granulins A, C, and F by expressing them as thioredoxin fusion proteins in Origami (DE3) Escherichia coli cells promoting disulfide bond formation in the cytoplasm environment. The thioredoxin tag is removed by proteolytic cleavage with enterokinase and granulins which are purified by reversed-phase HPLC. Well-folded disulfide species display lower retention time than misfolded species and therefore can be readily purified.

Key words

Granulin Progranulin Large-scale bacterial expression Disulfide bond Purification HPLC 

References

  1. 1.
    Bateman A, Bennett HP (1998) Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158:145–151CrossRefPubMedGoogle Scholar
  2. 2.
    Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31:1245–1254CrossRefPubMedGoogle Scholar
  3. 3.
    Benham CJ, Saleet Jafri M (1993) Disulfide bonding patterns and protein topologies. Protein Sci 2:41–54CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847CrossRefPubMedGoogle Scholar
  5. 5.
    Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556CrossRefPubMedGoogle Scholar
  6. 6.
    Tolkatchev D, Malik S, Vinogradova A et al (2008) Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 17:711–724CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakamoto H, Bardwell JC (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694:111–119CrossRefPubMedGoogle Scholar
  8. 8.
    Prinz WA, Åslund F, Holmgren A et al (1997) The role of the Thioredoxin and Glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667CrossRefPubMedGoogle Scholar
  9. 9.
    Bessette PH, Åslund F, Beckwith J et al (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Puigbo P, Guzman E, Romeu A et al (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Durfee T, Nelson R, Baldwin S et al (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Skala W, Goettig P, Brandstetter H (2013) Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer's toolbox. J Biotechnol 168:421–425CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stark GR, Stein WH, Moore S (1960) Reactions of the cyanate present in aqueous urea with amino acids and proteins. J Biol Chem 235:3177–3181Google Scholar
  14. 14.
    Shaw WH, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4733CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA

Personalised recommendations